

Performance Evaluation of Embedded Stormwater Chambers Under Simulated Highway Truck Loads

Presenters

Kawalpreet Kaur, Ph.D., Post Doctoral Research Associate, CUIRE/UTA Ehsan Rajaie, Ph.D. Candidate, Graduate Research and Teaching Assistant, CUIRE/UTA Unmesh Konde, Civil Engineer, Xerxes

Presentation Outline

- Introduction
- Research Objectives
- Test Methodology
- Test Results and Discussions
- Finite Element Analysis
- Conclusions
- Recommendations

Kei

Introduction

Xerxes HydroChain™ Chamber

- Application: Underground storage of stormwater runoff
- Material: Fiberglass reinforced plastic
- Industry Standards: AASHTO LRFD, ASTM F2787
- Load Rating: HL-93/H-20 vehicular load and earth load

Research Objectives

Conduct live load testing of Stormwater Chambers S29B

- Characterize installed performance by simulating highway truck loads at multiple depths of cover
- Analyze surface loads, pressure on chamber, deflection & strain at critical points
- Characterize failure modes
- Determine the ultimate strength
- Simulate structural behavior

Chamber Embedment

- Soil Pit Base: 6" well-compacted gravel (3/8"-2" /8-50mm) clean, crushed, angular stone
- Alignment in both X and Y directions
- Embedded with loose gravel
- Backfill with compacted gravel up to 24"

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

Loading

- Live load based on AASHTO HL-93/H-20
- 330 kips Actuator
- 20 in. x 10 in. load plate
- Simulated static & dynamic loads
- Simulated design truck traveling perpendicular and parallel
- Static load: minimum 1 minute

BO

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

Instrumentation

- Strain Gauges: 7 on inner side; record strain at critical points
- Earth Pressure Cells:
 3 at crown; measure
 pressure load

30

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

Linear Variable Differential Transformer (LVDT)

- First LVDT: measures vertical deflection
- Second LVDT: measures deflection of shoulder

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

Test Results

	Chamber ID	Orientation		1	-minute Da	ta
Test 1	South	Perp	Deflection (in.)	0.12	0.27	0.45
			Force (lb)	13,815	26,000	35,000
			Deflection			
Test 3	Mid	Paral	(in.)	0.11	0.26	0.52
		T GTGT	Force (lb)	14,240	27,000	39,800
			Deflection			
Test 4	North	Perp	(in.)	0.11	0.21	0.32
			Force (lb)	12,175	20,585	27,164

40: Default cfg > 12-5-23 lin Deflection 60 m Interrupt Data Acquisition Zero Load and External LVD Indial XX Loading
 Deplacement Ramp 0 2in/min 1
 Stop Deplacement Ramp at 0.2in Deflection
 Pold at 0.2in Deflection Ramo at 0.9m ment Romp at 0.25in Deflection D Displacement Ramp 0 2mgmin 2 Sop Displacement Ramp at 0 9in Del Stop Displacement Ramp at 0.6in Defli Displacement Ramp 0 2n/mo 3 Stop Displacement Ramp at 0 3n Delect Disclacement Ramp @ 2n/mir Hold at 0.8n Deflection id at 0 See Defle Command Command Data Acquisition - Timed Acquisition Pr 1000 (6) Qī 🜡 8 🖸 🤮 🚍 🛃 📭 R^A ^ 🔽 dij 👬 B16 PM Dell . . .

Underground Infrastructure Conference

13

Construction. Rehabilitation. Asset Management.

Test Results

Deflection vs. Force

Finite Element Analysis (FEA)

Simulated structural behavior using FEM in ABAQUS

* CELEBRATING

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

FEA (Geometry)

Generated 3D geometry in ABAQUS

- Chamber Dimensions: 61.76" x 37.27" x 33.35"
- Load pad size: 10" x 20" (parallel orientation)
- Soil Box Dimensions: 144" x67.27" x33.35"
- Soil Cover Depth: 24"

Construction. Rehabilitation. Asset Management

March 4-6, 2025 | Houston, T

30

FEA (Material Properties - Chamber)

Model S-29B

- Determined by ASTM Standards
- Density: ASTM D792
- Flexural strength & modulus: ASTM D790
- Yield stress and plastic strain: ASTM D638

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

FEA (Material Properties - Soil)

- Type of soil: coarsegrained gravel
- Modeling criteria: Drucker-Prager

Density (pcf) (Max. dry density)	130
Young's Modulus (psi)	1,100
Poisson Ratio	0.28
Angle of Friction (o)	37
Flow Stress Ratio	0.8
Ultimate Yield Stress	8
Plastic Strain	0.0032

	tion:			
/late	rial Behaviors			
ensi	ity			
ruc	ker Prager			
Dru	cker Prager Harder	ning		
Sub	option Editor		×	
nick	or Pragor Hardonin			
uck	er Flager Hardenin	A 12000		
arde	ning behavior type	: O Compressi	on () Tension () Shear	
] Us	e strain-rate-deper	ident data		
] Us	e temperature-dep	endent data		▼ Sub
umb	er of field variable	s: 0 🗭		
Data				
	Yield	Abs Plastic		
	Stress	Strain		
1	5	0		
2	5.1	0.0006		
3	5.3	0.0009		
4	5.5	0.0011		
5	5.7	0.0013		
	6	0.0016		
6	6.8	0.0024		
6 7	0.0			
6 7 8	7.5	0.003		

 \times

* CELEBRATING

30

Construction. Rehabilitation. Asset Management.

March 4-6, 2025 | Houston, TX

🖨 Edit Material

FEA (Loading, Boundary Condition and Interaction)

- Soil-Chamber Interaction: surface-to-surface contact; rough friction coefficient (1.0)
- Loading: displacementcontrolled at 0.2"/min
- Boundary Conditions: restricted horizontal movement in X & Z directions

FEA (Meshing)

- Soil modeled using solid element type with 8 linear nodes (C3D8R)
- Chamber modeled using solid element type with 4 linear nodes (C3D4)

Construction. Rehabilitation. Asset Management.

FEA (Analysis)

Displacement magnitude

Von Mises stress distribution

⋇

30

YEARS 995 - 2025

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

Experimental Results

Normalized Data Using Polynomial Regression			
y = -53323x ² + 96613x + 3264.9			
Deflection (in.)	Force (lb)		
0	3,265		
0.12	14,091		
0.27	25,463		
0.45	35,943		
0.11	13,247		
0.26	24,780		
0.52	39,085		
0.11	13,247		
0.21	21,202		
0.32	28,721		

Summary Tests				
Tost ID	Deflection	Force		
IEST ID	In.	lb		
	0.12	13,815		
Test 1	0.27	26,000		
	0.45	35,000		
	0.11	14,240		
Test 3	0.26	27,000		
	0.52	39,800		
	0.11	12,175		
Test 4	0.21	20,585		
	0.32	27.164		

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

March 4-6, 2025 | Houston, TX

* CELEBRATING

YEARS

95 - 2025

FEM Results and Verification

Deflection	Force (lb)		Difference	
(in.)	Test	FEM	Difference	
0.11	13,247	12,875	3%	
0.12	14,091	13,903	1%	
0.21	21,202	23,044	-8%	
0.26	24,780	27,878	-12%	
0.27	25,463	28,845	-13%	
0.32	28,721	33,304	-15%	
0.45	35,943	43,212	-19%	
0.52	39,085	47,120	-20%	

Comparison of FEM and Test

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

March 4-6, 2025 | Houston, TX

* CELEBRATING

30

YEARS 95 - 2025

FEM Results

Force vs deflection

Conclusions

- Characterized structural performance: max pressure at crown, max vertical deflection, allowable service load,
- FEM analysis matched with experimental tests
- ASTM F2787 standard was validated using both FEA and

the experimental test for the Chamber

Recommendations

- Conduct additional tests at other cover depths
- Improve and develop FEM analysis in different parameters

Research Contributors

- Dr. Mo Najafi, P.E., F. ASCE., BC.PLW, Professor of Civil Engineering
- Blaine Weller, Director, Engineering Technology, Xerxes
- Jordan Ornquist, Team Lead, Sr. Stormwater Engineer, Xerxes

Thank You! Questions?

cuire@uta.edu

Kawalpreet Kaur, Ph.D. (817) 272-9177

> Ehsan Rajaie (469) 928-8844

Unmesh Konde Civil Engineer, Xerxes Unmesh.konde@mattr.com