Evaluation of Volatile Organic Compounds During CIPP Process: The Critical Role of Resin Liners and Curing Methods

Parisa Beigvand, Ph.D. Student Sevda Jannatdoust, Ph.D. Student

Center For Underground Infrastructure Research & Education (CUIRE)

The University of Texas at Arlington

March 4, 2025

Introduction

- CIPP is the most common pipeline renewal method.
- CIPP offers a fast and efficient repair solution.
- **CIPP** provides durability, forming a strong, seamless liner that withstands pressures and stresses within existing pipelines.
- CIPP enhances flow with its smooth inner surface, helping to improve flow characteristics and reduce future blockage risks.

Introduction (Cont.)

© CIPP installations may release volatile organic compounds (VOCs) into the air.

VOCs are linked to both short- and long-term health effects.

Source: CUIRE

CIPP Volatile Organic Compounds (VOC) Emissions

30

Volatile Organic Compounds (VOC) Compliance Levels

Table 1. USEPA Acute Exposure Guidance Level 1

Charainal of	Exposure limits USEPA (ppm)					Odor	
Chemical of Interest	10 min	30 min	1 hour	4 hour	8 hour	Threshold ppm	
Styrene	20	20	20	20	20	0.54	
Cumene	50	50	50	50	50	0.008 - 0.132	
Acetophenone	10	10	10	10	10	0.36 - 0.6	

© Level 1: non-disabling

Level 2: Disabling

Level 3: Lethal

VOCs Compliance Levels (Cont.)

Table 2. Averaging Period 8 hours- TWA Exposure Levels

Chemical of Interest	OSHA PEL (ppm)	CAL/ OSHA PEL (ppm)	NIOSH REL (ppm)	ACGIH TLV (ppm)
Styrene	100	50	50	10
Cumene	50	50	50	50
Acetophenone	N/A	10	N/A	10

Project Overview

Table 3. Projects Characteristics

Site	Segment Length (L.F)	Pipe Diameter (in)	Liner Thick (mm)	Curing Method	Cooking Temp °F	Curing Duration (hr.)	Resin Liner Type
1	154	18	5	Hot-Water	180	6	Vinyl Ester Styrene Free
2	350	10	5	UV	160	2.5	Vinyl Ester Styrene Free
3	1091	48.5	18	Hot-Water	180	9	Polyester Styrene-based
4	464	12	6	Hot-Water	180	6	Vinyl Ester Styrene-based

Weather Condition

Table 4. Weather Condition

Site Env	Envisore and	Temp	o(°F)	Wind speed	Wind Direction	
	Environment	Min	Max	mph		
1	Residential	42.2	56	4	NE	
2	Residential	44.1	77	5.5	SW-S	
3	Residential	68	92	2.8	SW	
4	Residential	49	74	2.8	E-ESE	

Sampling Methods and Equipment

- Real-time Monitoring
 - Photoionization Detectors (PIDs)

- Laboratory Analysis
 - Suma Canisters

Real-Time Monitoring (PIDs)

Testing Method

- Continuous 15-minute TVOC average concentrations.
- Hand-held instantaneous TVOC measurements.

Locations

- Upwind of Insertion MH
- Downwind of Insertion MH
- Hand-held PID (every 30 minutes, different locations)

Continuous TVOC Measurement Using PID Positioned Upwind and Downwind of the Insertion Manhole

Laboratory Analysis (Suma Canisters)

Baseline Measurements:

- Upwind of Insertion manhole (1-4 hours period).
- Downwind of Insertion manhole (1-4 hours period).
- Downwind of terminal discharge manhole (1-4 hours period).

• Measurements during liner installation:

- Upwind of Insertion manhole (8-12 hours period).
- Downwind of Insertion manhole (8-12 hours period).
- Downwind of terminal discharge manhole (8-12 hours period).

Measurements during Curing:

- 4 inches above the center of the Insertion Manhole (4-8 hours period).
- 4 inches above the center of the terminal discharge manhole (4-8 hours period).

Styrene Concentration Upwind of Insertion Manhole (15-Minute Average)

**
CELEBRATING

Styrene Concentration Downwind of Insertion Manhole (15-Minute Average)

Maximum Styrene Concentration _ Instantaneous Observation

Construction. Rehabilitation. Asset Management.

Time Weighted Average (TWA) Styrene Concentration Upwind of Insertion Manhole

Construction. Rehabilitation. Asset Management.

Time Weighted Average (TWA) Styrene Concentration Downwind of Insertion Manhole

Time Weighted Average (TWA) Styrene Concentration Termination Manhole

Underground Infrastructure Conference

Construction. Rehabilitation. Asset Management.

Conclusion

- Non-styrene-based resins complied with OSHA, NIOSH, and EPA exposure limits, while some styrene-based resins exhibited higher styrene concentrations.
- Instantaneous observations showed that all maximum styrene concentrations remained below the NIOSH -IDLH exposure limit.
- Air monitoring at the termination manhole with vinyl ester styrene-based resin indicated:
 - Styrene levels exceeded the NIOSH-REL threshold.
 - Concentrations remained below OSHA-PEL and AEGL-2 thresholds.
 - Styrene concentrations dissipated rapidly into the atmosphere, showing a significant drop within five feet of the termination manhole.
- Real-time air monitoring is recommended for on-site decision-making and comprehensive emissions assessment during CIPP installations.
- Improving environmental management, establishing safety standards, and conducting further research to refine exposure guidelines are recommended.

Thanks for The Opportunity!!!

CUIRE is ready to conduct more research on CIPP air emissions evaluation.

Resin Types	Resin Types Steam Cure		UV Cure	
Polyester Resin (Styrene Base)	Forney, TX Washington, DC SLRP-2 (Envirocure) Washington, DC SLRP-2 (Envirocure- Condenser Unit)	Garland, TX		
Vinyl Ester Resin (Styrene Base)		Flower Mound, TX		
Vinyl Ester Resin (Non-Styrene Base)		Washington, DC Soapstone Washington, DC SLRP- 2	Washington, DC Soapstone	
Epoxy Resin		Washington, DC SDWMR		

Completed

Target

Contact

Email: pxb6205@mavs.uta.edu

Cel: 682-373-2924

Questions?

Parisa Beigvand

Ph.D. Student

Email: pxb6205@mavs.uta.edu

CUIRE

Sevda Jannatdoust

Ph.D. Student

Email: sxj3652@mavs.uta.edu

The University of Texas at Arlington

