Cost-Effective Pipeline Condition Assessment for Asset Management Programs

By: Tom Iseley, Wei Liao Purdue University

Construction Engineering and Management

Agenda:

1. PCA and Asset Management

2. Introduction of PCA

3. Levels of PCA and Inspection techniques

4. Case of Switz City, IN

Pipeline Condition Assessment (PCA) & **Asset Management Current State PCA** of Assets 5 Long-term Level 2 of Service Funding Plan Asset Management Minimum Life Critical 4 3 Cycle Cost Assets **UNDERGROUND CONSTRUCTION TECHNOLOGY** THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

CORE COMPONENT No. 1 Current State of Assets

- What does the utility have Inventory
- Where are the assets located Mapping
- What are the assets condition PCA (Pipeline Condition Assessment)
- What technical solutions are available to optimize the useful life of these assets – Trenchless Technology

PCA Categories

1. External assessment

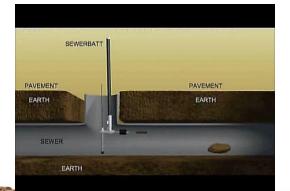
2. Internal assessment

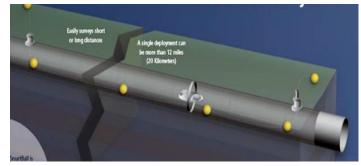
3. Structural assessment

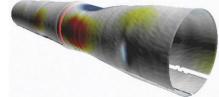
Pipeline Condition Assessment Methods

Two Types of NDT Inspection Techniques:

1- Visual NDT Methods


Pipe Condition Assessment Methods


2- Non-visual NDT Methods



UNDERGROUND CONSTRUCTION TECHNOLOGY

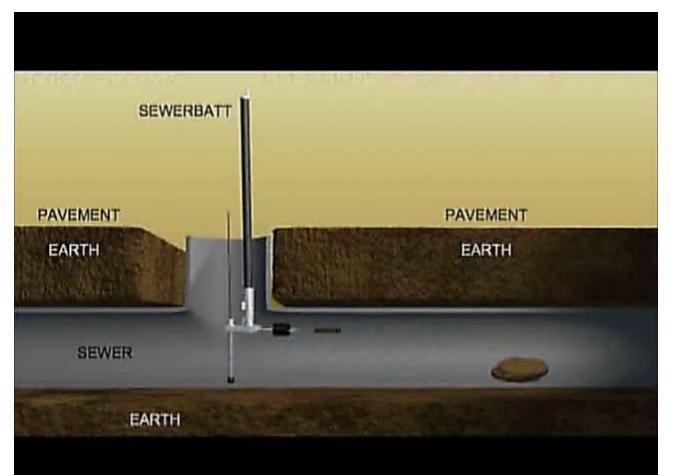
Inspection Systems

- Internal Optical Inspection Systems
- Optical Scanning Systems
- Pipe Wall Thickness Measurements
- Void Location Outside the Pipe
- Infiltration Detection Technology
- Pipe Dimensional Measurement Technology
- Pipe Position Determination
- Acoustic Sensing Technologies
- Zoom Cameras
- Pipe Penetrating Radar

4 Levels of PCA and Inspection techniques

- 1st Level
 - Zoom Camera
 - Acoustic
- 2nd Level
 - CCTV
 - Electro scan
 - Sonar
- 3rd Level adds more detail:
 - Optical Scanning System
 - GPR
- 4th
 - Specialized methods

UNDERGROUND CONSTRUCTION TECHNOLOGY


Condition Assessment

1st Level Inspection Techniques

UNDERGROUND CONSTRUCTION TECHNOLOGY

Acoustic Sensing Technologies

SewerBatt

UNDERGROUND CONSTRUCTION TECHNOLOGY THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

Acoustic Sensing Technologies

- AST Hardware
 - Acoustic sensor

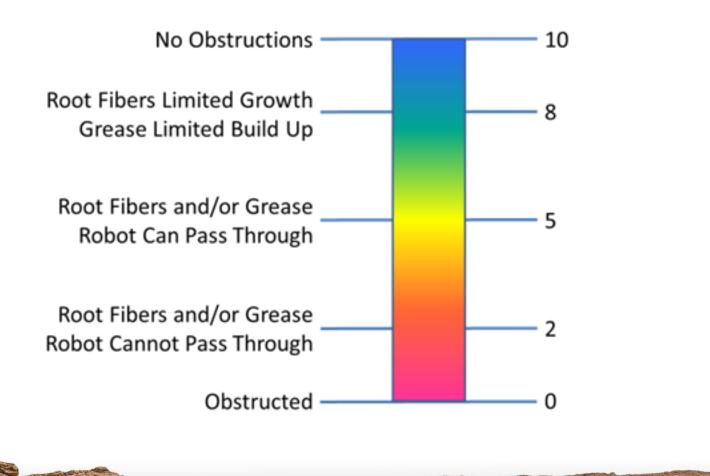
Simplicity, low-cost, speed and efficiency

CCTV

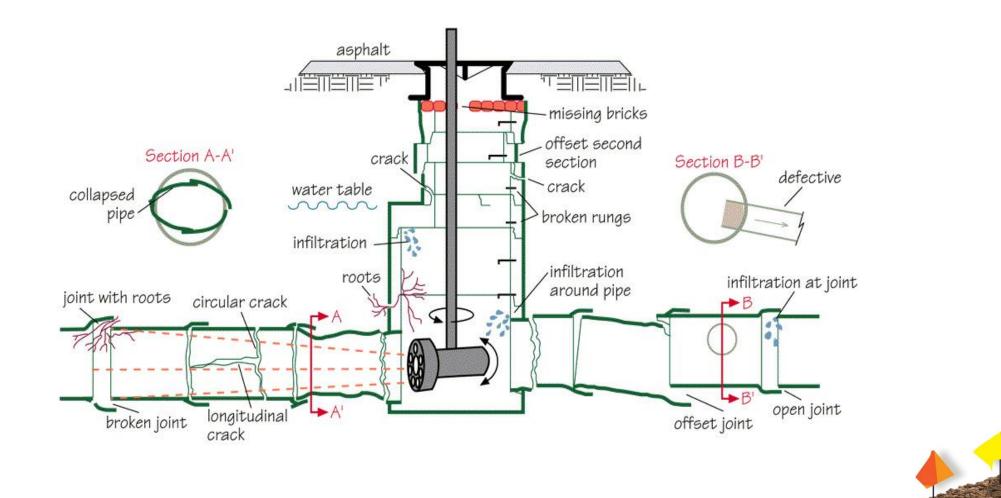
UNDERGROUND CONSTRUCTION TECHNOLOGY

Active Acoustic Pipe Inspection Background

- Patented technology
- Gravity-fed sewer focus
- Developed in Charlotte with CMUD as key partner



- Over 50M feet inspected with over 100 municipalities
- Rapid assessment helps better focus cleaning and CCTV resources


SL-RAT -How Does It Work?

SL-RAT Assessment Scale

Zoom Cameras

UNDERGROUND CONSTRUCTION TECHNOLOGY

THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

07

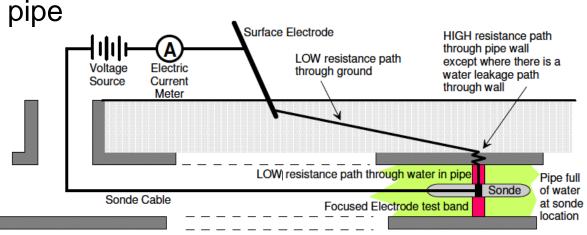
Zoom Cameras

Condition Assessment

2nd Level Inspection Techniques

UNDERGROUND CONSTRUCTION TECHNOLOGY

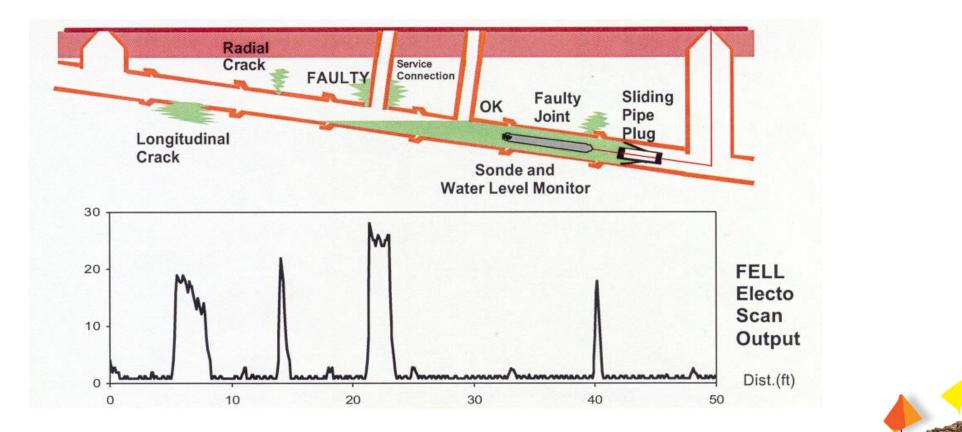
Closed-Circuit Television (CCTV) Inspection


> Visual inspection without man-entry.

- CCTV systems have been widely used for sewer systems. Usage in water mains is limited mainly due to :
 - Currently not available for in-service water main inspection.
 - Requires a special launching and retrieval chamber in water mains.

Infiltration Detection Technology

- Focused Electrode Leak Location (FELL)
 - Ideal to detect infiltration leaks
 - Simplified electrical circuit
 - High resistance of pipe wall prevents electrical current
 - Electrical current flows through holes in the

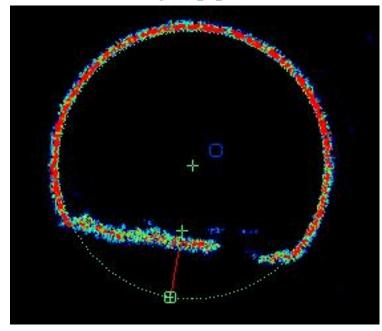


Electro-Scan Electrical Schematic

Infiltration Detection Technology

• Focused Electrode Leak Location (FELL)

UNDERGROUND CONSTRUCTION TECHNOLOGY THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

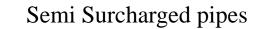

22

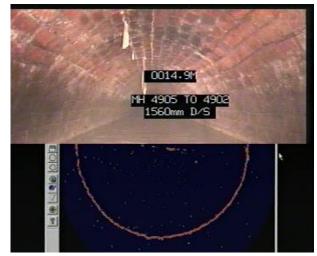
Sonar Technologies

Only works underwater

- Profiles the pipe every second
- Results in high resolution profiles
- Images can be measured both on and off site
- Density of silt can be assessed (color of signal. Red = dense to Blue = soft)
- Any actionable defects can easily be seen

Surcharged pipes



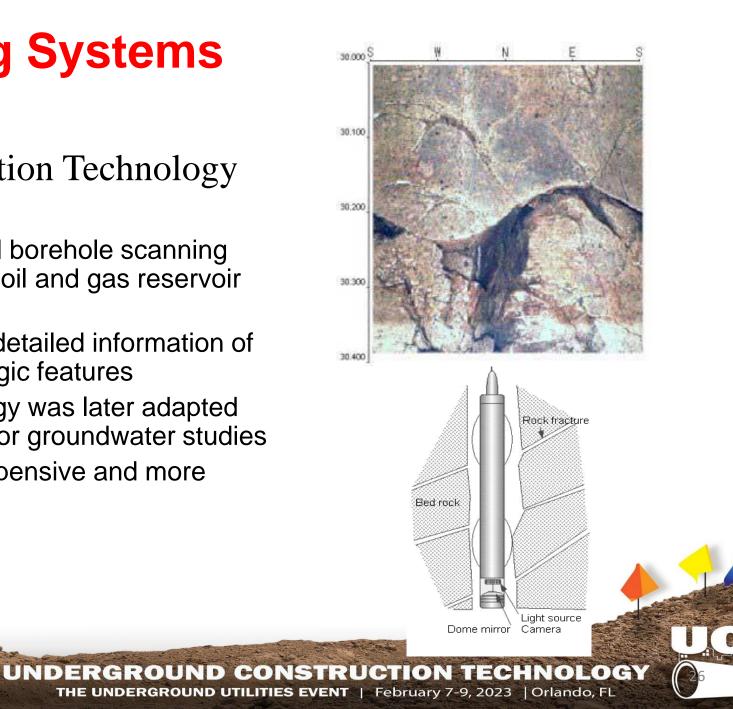

Sonar Technologies

 Condition Assessment using CCTV and Sonar combined

TISCIT

- Combines the best of the two 1st level Inspection Techniques.
- For Interceptors and any pipe with a high flow that cannot be removed/controlled
- The invert condition can now be clearly seen, using Sonar under the CCTV camera.

• Floating Method


Condition Assessment

3rd Level Inspection Techniques

UNDERGROUND CONSTRUCTION TECHNOLOGY

Optical Scanning Systems

- Sewer Scanning & Evaluation Technology (SSET)
 - The SSET is based on optical borehole scanning technology developed for the oil and gas reservoir analysis
 - Provided engineers with detailed information of fractures and other geologic features
 - The same scanning technology was later adapted for use in mapping fractures for groundwater studies
 - Systems became less expensive and more portable

Optical Scanning Systems

• SSET

- Like the borehole televiewer, SSET obtains a 360-degree scan of the inside pipe wall
 - The image is split at the invert "un-wrapped", and laid flat for viewing
 - A forward view is also provided for 3-D effects

Pipe Position Determination

Gyrosteering Tools

- On Board Sensors for Measuing Inclination and Reander High Intensity LED Light Array On Board Sensors to the sense of the
- The SSET FDA (Field Data Acquisition) Digital Scanner
 - High-angle "fish eye" lens
 - 360-degree side scan
 - Forward-looking views
 - High-intensity LED light array
 - On-board gyroscope to measure meander
 - Inclination measurement
 - Data digitally recorded

UNDERGROUND CONSTRUCTION TECHNOLOGY

Optical Scanning Systems

12", Re-ent	forced Concrete	Forward View of fin12inch_demo.zip	
3 -			
12 –		9	3
9-			
6			.59 ft
"Un-wrapped"		Forward Looking	
Side Scall II	nage	Image	
	Blackhawk-P	AS	

GPR (Ground Penetrating Radar)

Future Scan is a GPR (Ground Penetrating Radar) system, mounted on a pipeline inspection robot, that is able to "see" **into** and **beyond** the inner pipe wall.

Future Scan Pipe Penetrating Radar for...

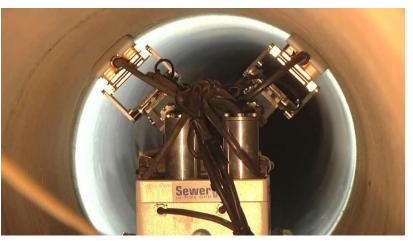
-- Void Detection

&

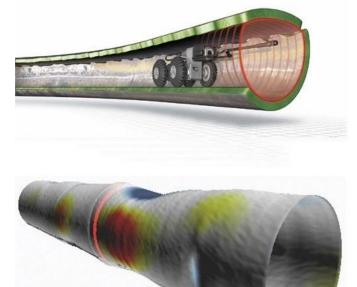
-- Pipe Inspection

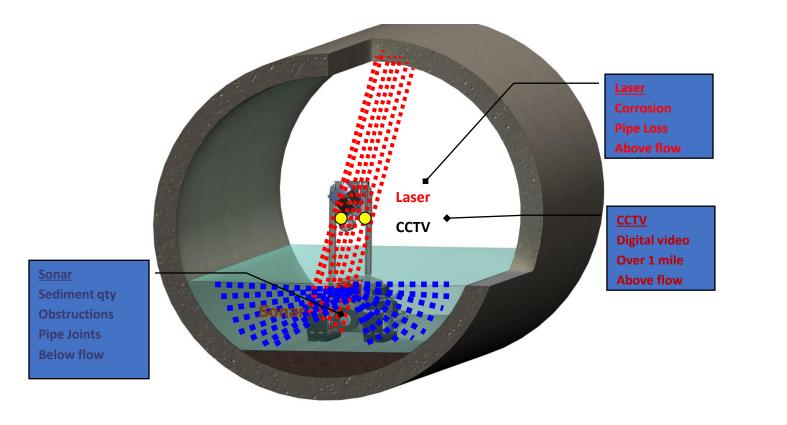
What <u>Isn't</u> Future Scan

- It is not SONAR, it doesn't work under water.
- It can't see thru metallic pipe, it only works in non-ferrous pipes like concrete, clay, plastic, etc.


FutureSca

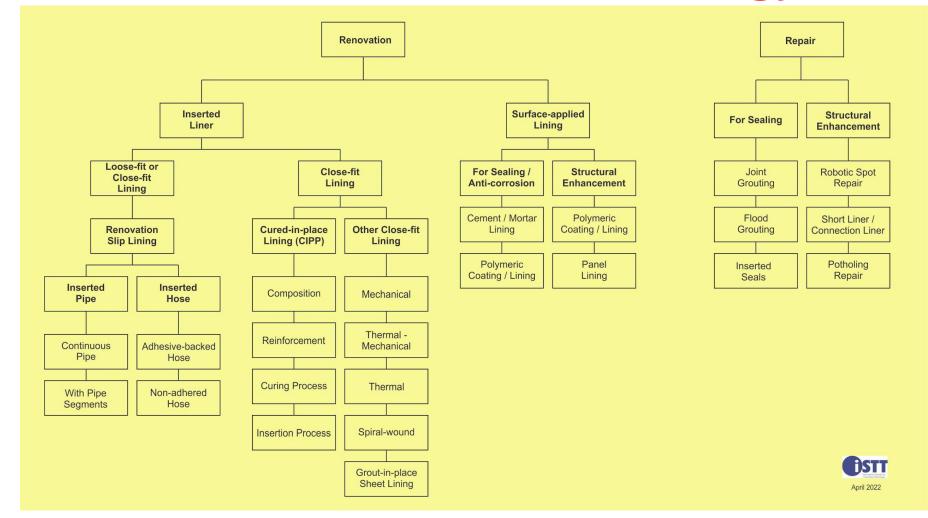
Pipe Penetrating Radar (PPR)


- Underground in-pipe application of GPR
- Non destructive testing method
- Detects defects and cavities within and outside mainline diameter
- Unique ability to map pipe wall thickness and deterioration


Pipe Dimensional Measurement Technology

- Laser profiling
 - Typically used on large diameter projects
 - Cost is not justified for small/medium size diameters
 - Laser profiling was implemented to run preand post-laser profiling on CIPP to determine wall thickness
 - The accuracy on small diameter variances was not enough to successfully implement the technology as a quality control method for wall thickness

Multi-Sensor Technology


Multi-sensor robotic evaluations

UNDERGROUND CONSTRUCTION TECHNOLOGY THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

3

Rehabilitation Technology

The state

UNDERGROUND CONSTRUCTION TECHNOLOGY

THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

- Total

35

Switz City, IN Asset Management Plan

- Small town (population less) than 300)
- Switz City Complete water system and sewage system
- Aging system
- No budget for developing asset management plan

AMP Developed By:

BYNUM FANYO

WWTF INFLUENT MONITORING DATA ANALYSES for SWITZ CITY

ANALYSIS PERIOD: OCTOBER 01, 2021, to OCTOBER 30, 2022

I/I as a Percent of Annual Flow:

76% Calculated using ADDWF - 7-day low flow

Estimated Annual I/I Cost: \$10,000 Years to Payback: 10.5 (After 50% Reduction)

by: George E. Kurz, P.E., DEE

Main Source:

8

UNDERGROUND CONSTRUCTION TECHNOLOGY

Thanks for your attention!

Questions?

Contact information

Tom Iseley

diseley@purdue.edu

Wei Liao

liao186@purdue.edu

Construction Engineering and Management

13

UNDERGROUND CONSTRUCTION TECHNOLOGY