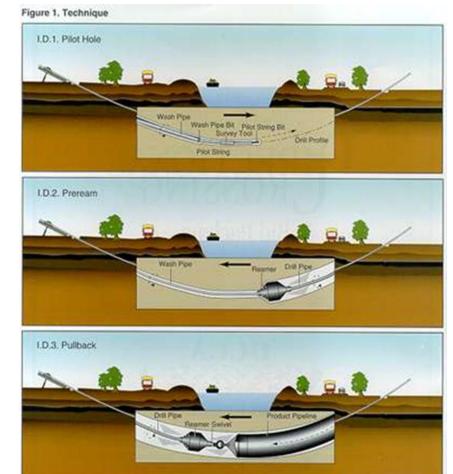
# Long Pulls by Horizontal Directional Drilling





#### Brief History of HDD as a Pipeline Installation Methodology

- HDD developed in the 70's
- Power cable then road crossings for gas
- Martin Cherrington with Titan Contractors for PG&E
- Pajaro River crossing in Northern CA with 5" mud motor
  - ~500 LF pilot taking 1 month
  - Tracked using a single shot survey system
  - Discarded drilling tools that drill back to surface.




### Brief History of HDD as a Pipeline Installation Methodology

- Current industry practice took off in the 80's and 90's
- Drill rig capabilities & steering technologies (limited growth)
- Initial growth in smaller diameter pipe
- Tremendous growth in the waterworks market in the last 20 years in the US and abroad
- Rivers the size of the Mississippi are crossed by HDD with minimum impact to the environment
- The longest steel HDD with steel pipe in the US...
- The longest thermoplastic HDD in US to date is...

### **Basics of Horizontal Directional Drilling**

- Guided pilot hole is drilled along a bore path
- Drilling fluids are injected into the hole to stabilize and lubricate
- Back reamer is used to enlarge the pilot hole
  - Multiple passes are required to accommodate pipe OD
  - Borehole 1.5 x OD of new pipe or pipe
     OD + 12"
- Product pipe is pulled through the bore hole



### Where is Horizontal Directional Drilling utilized?

- Water, Wastewater, Conduit, Casing, Gas, Comm., etc.
  - Waterbody crossings, outfalls and shore approaches
  - Interstate, Highway, county road, driveway and parking lot crossings
  - Conflicting utilities such as gas lines or storm drains.
  - Pipeline relocation/replacement



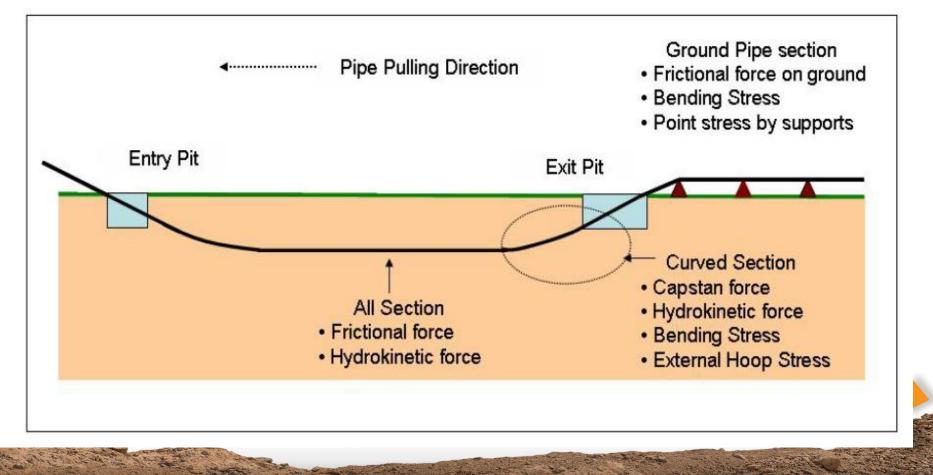




### Bay County, FL – Hathaway Bridge

- Constructed in 2003, replacing St. Andrew Bay Bridge
- Accommodates a high volume of daily traffic
- 4500 LF 24" ductile iron water main also installed on bridge
  - Supported with concrete
  - Not easily accessible
- Leaks detected in 2017
- FDOT requested long term solution with pipe off the bridge
- DI Bypass




#### **Design-Build Team**

- Selected by Bay County
- Contractor: Marshall Brothers Construction Inc.
- HDD Subcontractor: Mears Group
- Engineer: Dewberry Engineers Inc.
- Partnered with HDD risk mitigation specialist Brierley & Associates
- Bay County Engineer Representation: Mott McDonald



#### HDD Material Properties to Consider

- Tensile loading of joint
- Bending capability
- Critical buckling capability and deflection



#### HDD Pull Force Standard Assumptions

- Standard assumptions:
  - Tensile stress at yield
  - Modulus of elasticity
  - COF drill mud = 0.3
  - COF rollers = 0.2
  - COF ground = 0.5
  - Mud density 12.5#/gal (1.5 sp.gr.)
- Follows ASTM F1962 methodology

FPVC 7,000 psi 400k psi

UNDERGROUND CONSTRUCTION TECHNOLOGY THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

 Steel
 HDPE

 35,000 psi
 3500 psi

 29M psi
 110K (ST)

 28K (LT)

#### HDD Pipe Materials

- Steel
- HDPE
- PVC
  - Fusible C900 PVC®
  - Mechanically restrained joint





• Ductile Iron





### Design – Material Selection

- Steel & Ductile Iron
  - Ruled out due to corrosion, constructability and cost
- HDPE
  - Concerns with disinfectant oxidation
  - Insufficient history with HDD installations >5000 LF
- Fusible PVC
  - 15 HDDs over 5,000 LF
  - Bay County >95,000 LF of Fusible PVC pipe installations over 15 years
  - Dewberry familiar with material, and have used it for previous HDD projects including a 36" FPVC and two (2) - 30" FPVC HDDs replacing failed HDPE pipe

### Horizontal Directional Drilling Considerations

- Corrosive Soils
- ID/OD Relationship
- Pipe fusion and laydown area
- Insertion trench
- Drill Mud
- Geotechnical information

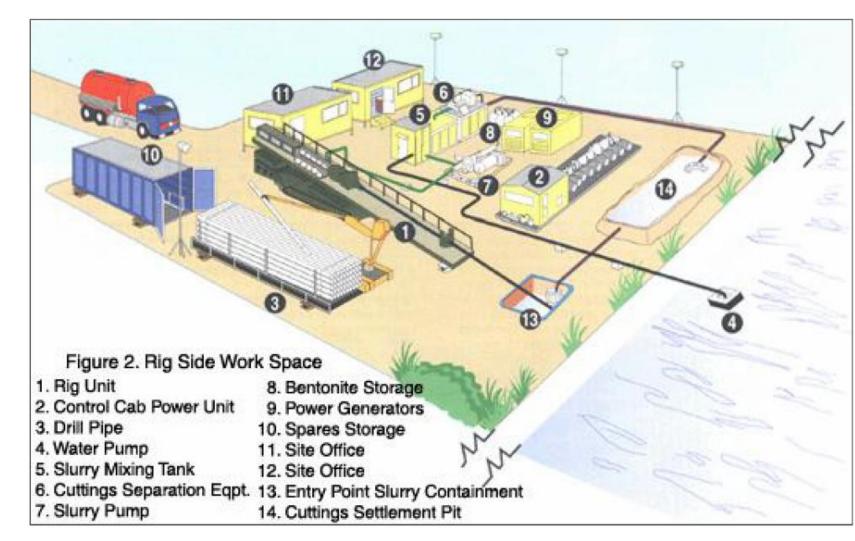
- Bend radius
- Pull Force required
  - Rollers
  - Buoyancy modifications
- Depth- critical buckling pressure
- Pressure test
- Connections

### HDD Rig Sizes and Capabilities

#### **Maxi Class**

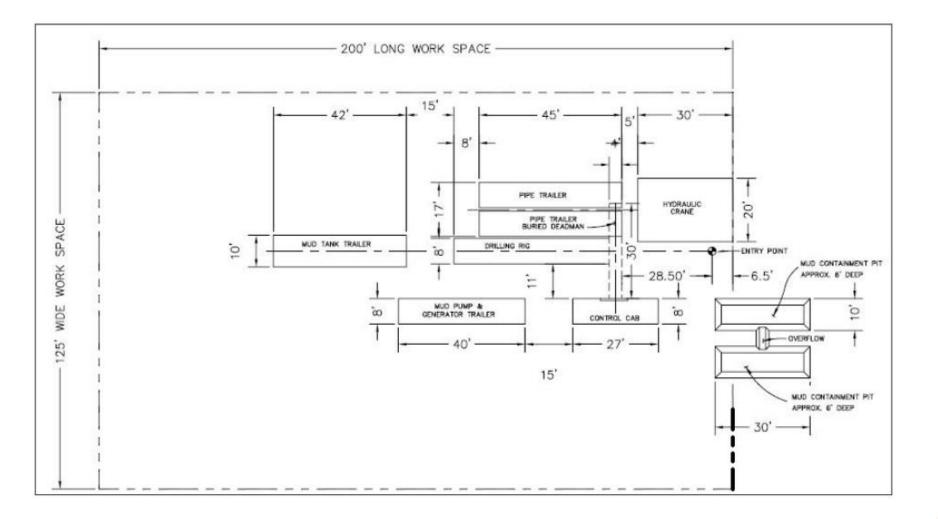
- Over 100,000# pullback
- Over 12,000 ft-lbs torque
- Over 10,000 feet drive lengths
- Depths up to 200 feet deep
- Up to 48" diameter installations
- ≤ 30 ton machine weight
- Typical rack angle 8-18 degrees (common not to exceed 12 deg.)




#### Hathaway HDD Rig Size

- 660K HDD Rig
- 140K HDD Rig
  - 1 week intersecting pilot






#### Typical Drill Rig "Spread" or Set Up – Maxi-Rig

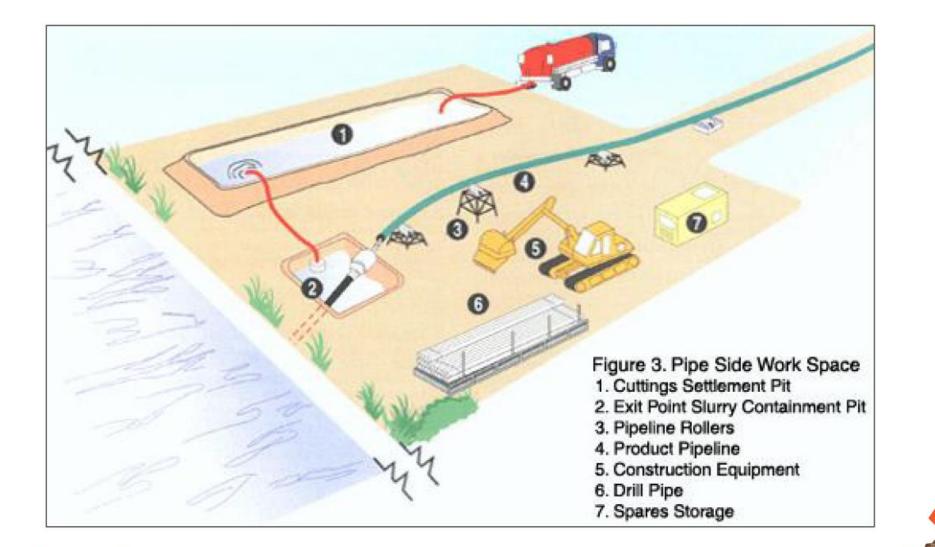


UNDERGROUND CONSTRUCTION TECHNOLOGY THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

### Typical Drill Rig "Spread" or Set Up – Maxi-Rig



UNDERGROUND CONSTRUCTION TECHNOLOGY


THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

6

#### Hathaway Bridge Spread



#### Pipe Side Working Space



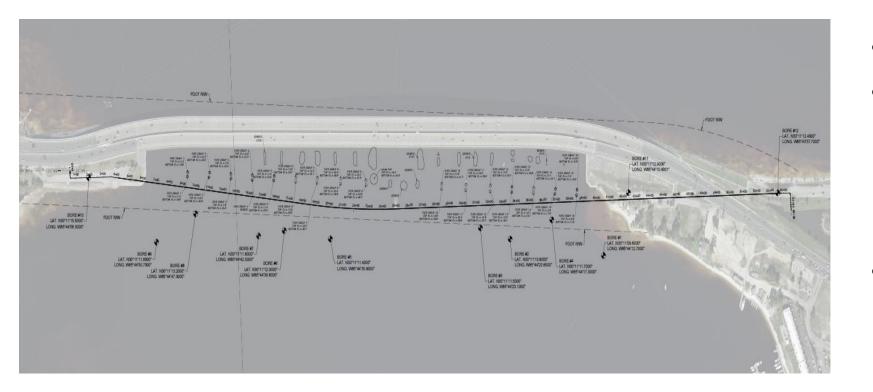
UNDERGROUND CONSTRUCTION TECHNOLOGY

THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

#### Hathaway Bridge Pipe Side



#### UNDERGROUND CONSTRUCTION TECHNOLOGY


THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

# Subsurface Investigation

- Geotechnical information is critical to overall success
- ~500 LF increments below elevation of planned depth
- N-values 10-50 are ideal
- Geological transitions present unique challenges
- Rock requires special tooling and increases cost 2.5-3X



#### Hathaway Subsurface Soil Boring Plan



- September 2018
- Primarily sands
   with varying
   amounts of silt,
   clay and shell
- 112' depth identified as most suitable soils

#### Steering bits – how they work based on geology

• In softer ground, 'spade' or 'spoon' bits may be used

 In harder ground and rock, a down-hole "mud motor" with a "bent sub" to steer or rock hammer

 In all cases, drilling fluid is used to aid in the steering and 'cutting' of the soil







#### Reamer Selection based on Geotech

- Helical (S, CL, DC)
- Fluted (S, DC, Cobble)
- Wing / Bar Cutter (S, CL, DC)
- Spiral (Cobble)
- Radial Flow (S, CL, DC, Cobble)
- Fly Cutter (S, CL)
- Cyclone (S, CL)
- Hole Opener (Rock)



#### Hathaway Bridge Reamer Process

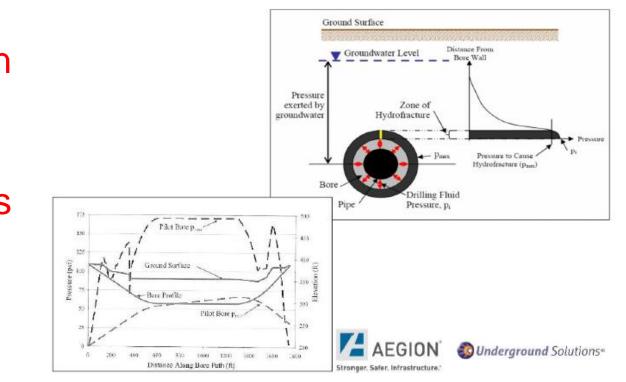
- 40" borehole (6">24">30">40")
- Trailed rods
- Reduction in mud density prior to pull-in with recycler
- XL Pull Head w/ Barrel Reamer in front pull-in



## **Drilling Fluid based on Geotech**

#### **Drilling Fluid Is:**

- Primarily water
- Clay mineral (bentonite)
- Polymers
- Lost circulation materials
- Wetting agents
- Suspension aids
- Iubricants


#### **Drilling Fluid Must:**

- Transport cuttings or spoils from the borehole
- Inhibit exfiltration of fluid from the borehole
- Lubricate the HDD tooling

#### MUD CONTROL

- Indicators of poor mud control
  - Loss of circulation
  - Frac out or inadvertent return
  - Low solids return rate
  - Soil sticking to drill stem
  - High fluid pumping pressures
  - High Pull Forces
  - High Rotational Torque
  - No additives to the makeup

#### THERE IS NO UNIVERSAL SOIL, SO THERE CAN NOT BE A UNIVERSAL MUD MIXTURE AND VOLUME TO BE PUMPED



Plastic Cavity Expansion Model is used to estimate geological pressure carrying capacity

#### Pre-qualifications and Driller Requirements

- Driller experience with HDDs of similar length and equipment
- Game Plan for Success
  - Drilling plan
    - Equipment and specifics of drill completion
  - Drilling Fluid Management Plan
  - Drill Contingency Plans
    - Spills, Inadvertent returns, product pipe issues, loss of returns or circulation



## Hathaway Bridge Drilling Fluid

- Constant monitoring of drill fluid properties
- Drillplex drilling fluid system
  - Added to bentonite mix
  - Mixed metal oxide and water based
  - Highly viscous and nontoxic
  - Gel state when not circulating
  - Superior suspension and carry capacity
  - Improves hole stability



## Drilling Fluid

- Cleaned
- Reused
- Solidified
- Disposed of:
  - Landfill
  - Earthen pits
  - Land applied
  - Soil amendment
  - Ponds
  - Sometimes requires testing




# **Tracking Systems**

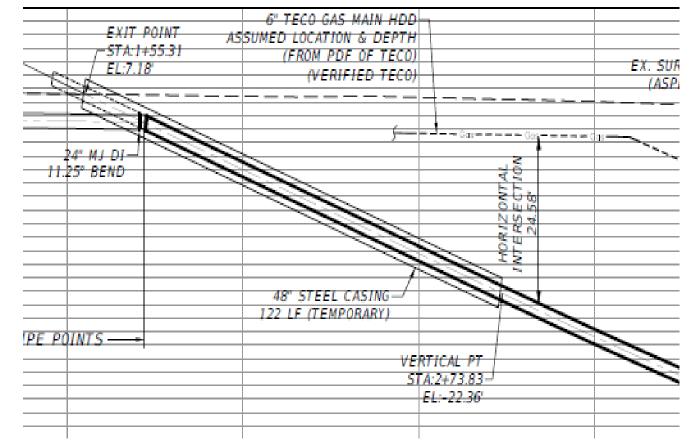
Walkover



• Electronic bore path logging available for all tracking

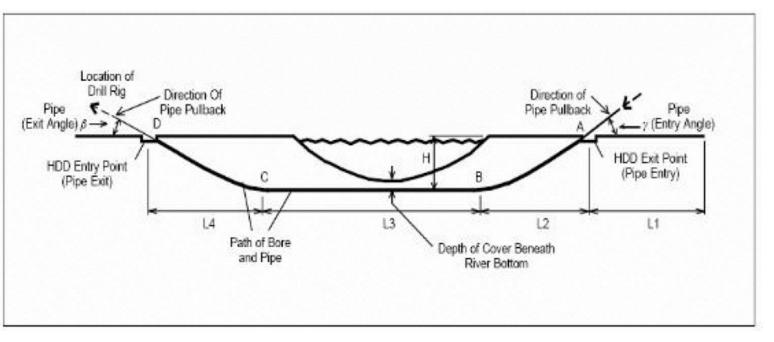
• Wireline




### **HDD Conductor Casings**

- Prevents groundwater and sediment infiltration into borehole
- 80-200+ LF
- Stabilizes borehole and reduces risk of inadvertent returns
- Requires centralizers for drill pipe
- Reduces friction with carrier pipe
- Annular space can be grouted or casing pipe removed




## **Drilling Fluid**

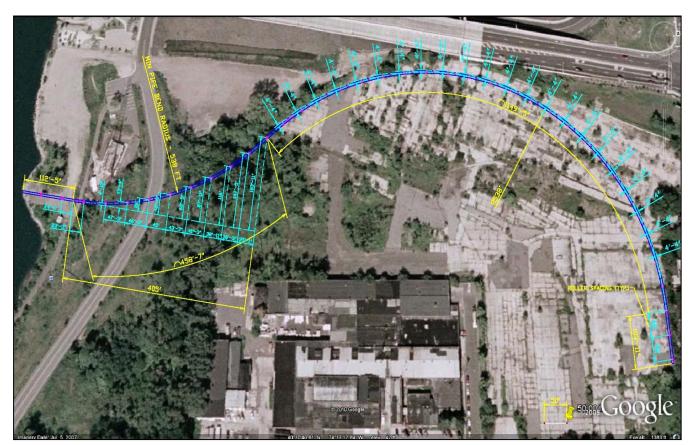
- Air hammers utilized to install 48-inch steel casings at entry/exit points
- 122 ft on West side
- 171 ft on East side
- Steel casing annular space grouted with low-density cellular grout



### Borehole Geometric Alignment Considerations

- Curves
- Couple alignment with geotechnical understanding
- Use Large Radii
- Keep alignments straight
- Avoid compound curves
- Appropriate offset from critical elements (rivers, roadways, other conflicts)




## Hathaway Alignment Considerations & Design

- Old Bridge Structure
- Bathymetry
- 48' deep water column
- 6" Teco Gas Main
- Geotech
- FDOT HWY 98 (10X Reamer)

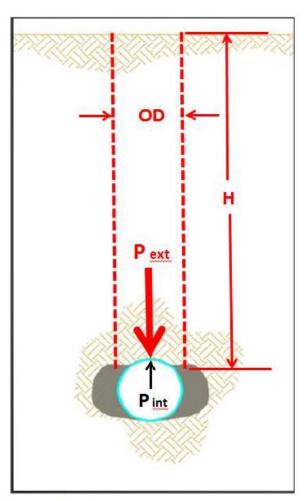
- Exit Angle = 10 degrees
- Entry Angle = 14 degrees
- 3000' radius vertical
- 2500' horizontal curve
- 24" DR 18 FPVC = 538' min radius
- 112' depth

### Surface Layout

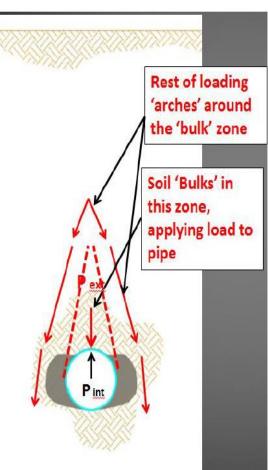
- Obstructions above ground interfere with entering pit
- Pipe string
- ROW Easements
- Overhead power
- Horizontal bending
- Vertical Bending



#### Hathaway Bridge Pipe Layout


- Three separate 1,800-ft pipe strings on 1300' radius
- Aerial insertion into pipe string provided by UGS
- 2 Intermediate fusion joints



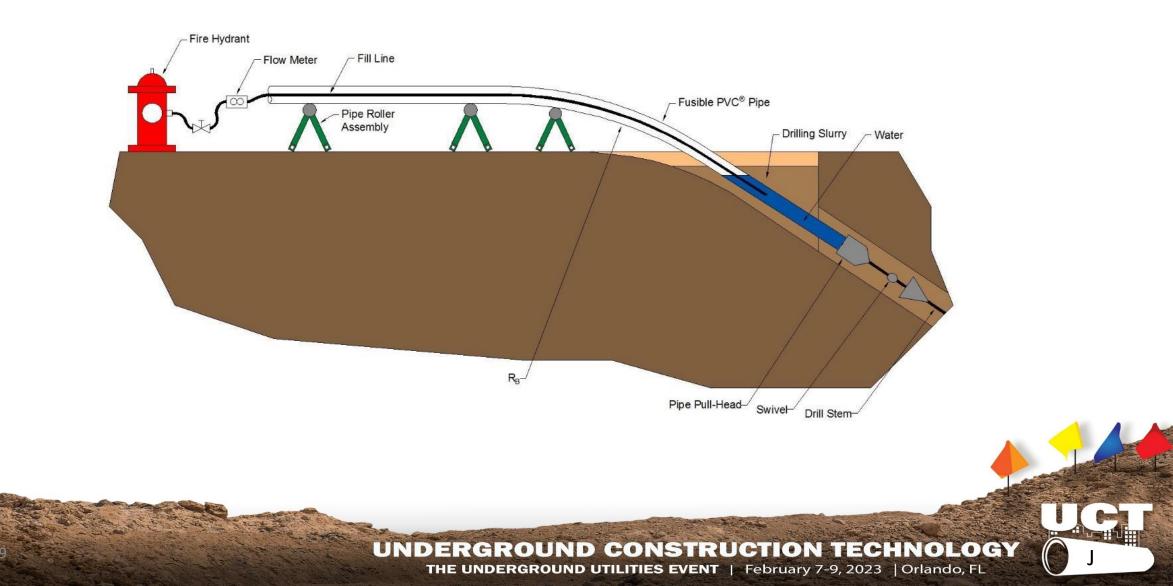



# **Full Prism Loading**

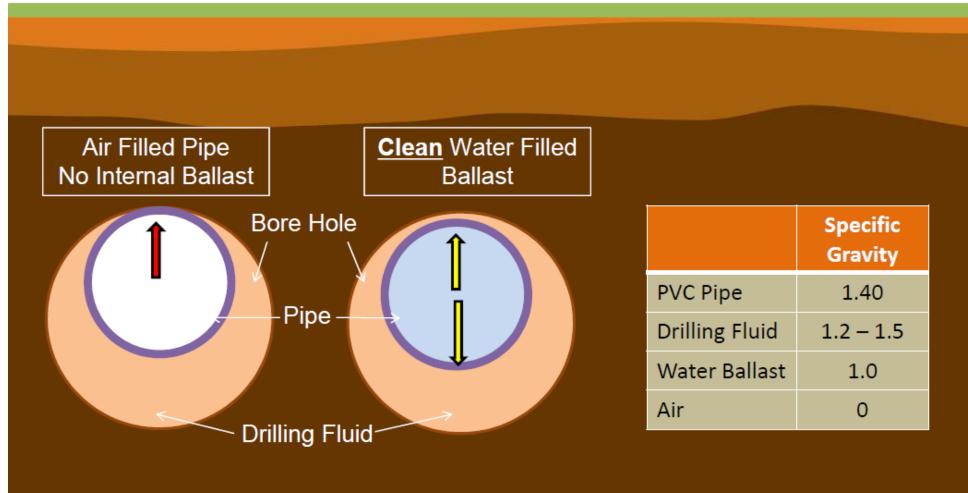
# Soil Bridging



- Full soil prism assumed
- Loading calculated based on depth and OD of pipe
- Guidance in the PVC Pipe Handbook, ASTM F1962, other locations

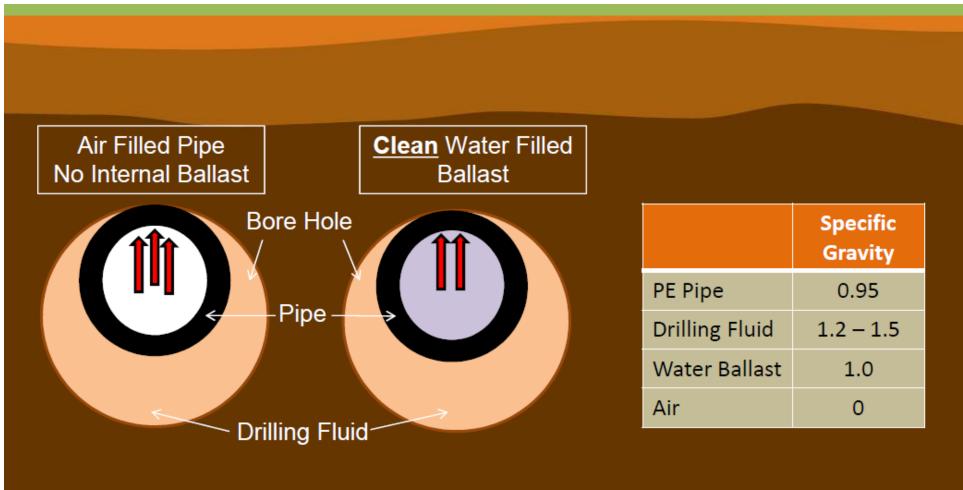



- Prism load is reduced by a % based on 'soil bridging'
- Overburden will 'bridge' over the excavation, thus reducing the effective load
- Guidance in ASTM F1962


Critical Buckling Resistance is an Important Consideration for Installation and Long Life Expectancy (i.e. in HDD Borehole)

| Long Term Critical Buckling Pressure |                                        |  |                      |                                        |  |  |
|--------------------------------------|----------------------------------------|--|----------------------|----------------------------------------|--|--|
| PVC                                  |                                        |  | HDPE                 |                                        |  |  |
| Modulus = 400,000 psi                |                                        |  | Modulus = 29,000 psi |                                        |  |  |
| SF = 1.0                             |                                        |  | SF = 1.0             |                                        |  |  |
| DR                                   | Critical Buckling<br>Pressure<br>(PSI) |  | DR                   | Critical Buckling<br>Pressure<br>(PSI) |  |  |
| DR 14                                | 426                                    |  | DR 7.3               | 291                                    |  |  |
| DR 18                                | 191                                    |  | DR 9                 | 142                                    |  |  |
| DR 21                                | 116                                    |  | DR 11                | 73                                     |  |  |
| DR 25                                | 68                                     |  | DR 13.5              | 37                                     |  |  |
| DR 32.5                              | 30                                     |  | DR 17                | 18                                     |  |  |
| DR 41                                | 15                                     |  | DR 21                | 9                                      |  |  |

# Pipe Ballasting to reduce buoyancy




# Buoyancy Example for PVC Pipe in HDD Bore Hole



## UNDERGROUND CONSTRUCTION TECHNOLOGY

# **Buoyancy Example HDPE Pipe in HDD Bore Hole**



### UNDERGROUND CONSTRUCTION TECHNOLOGY

# Hathaway Pipe Ballast Setup







## UNDERGROUND CONSTRUCTION TECHNOLOGY

| Buoyant Weight Component                                                                                  | If Pulled<br>Empty<br>#/LF | Ballasted<br>#/LF<br>(12.5#/gal) | Ballasted<br>#/LF<br>(10.7#/gal) |  |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------|--|--|
| Displaced Drill Mud(3.63 CF/LF @93.6<br>pcf/12.5#/gal)                                                    | 339                        | 339                              | 290                              |  |  |
| 24" DR 18 Pipe Weight (per LF) 25.8"<br>OD                                                                | (71)                       | (71)                             | (71)                             |  |  |
| Internal Ballast(2.86 CF.LF @62.4 pcf)                                                                    | 0                          | (179)                            | (179)                            |  |  |
| Total Buoyant Weight                                                                                      | 268                        | 89                               | 50 合                             |  |  |
| Pull Force per LF using 0.3 COF                                                                           | 80.4                       | 26.7                             | 12                               |  |  |
| 5,400 LF HDD Total Estimated Pull Force                                                                   | 434,000                    | 144,180                          | 64,800                           |  |  |
| UNDERGROUND CONSTRUCTION TECHNOLOGY<br>THE UNDERGROUND UTILITIES EVENT   February 7-9, 2023   Orlando, FL |                            |                                  |                                  |  |  |

# 24" DR 18 Fusible Pipe Fusion

- Pipe fused together using McElroy T-900 machine, and assembled in three separate 1,800-ft pipe strings
- Test plugs installed inside pipe
- Intermediate fusion on rollers
- Datalogger or 119 joints

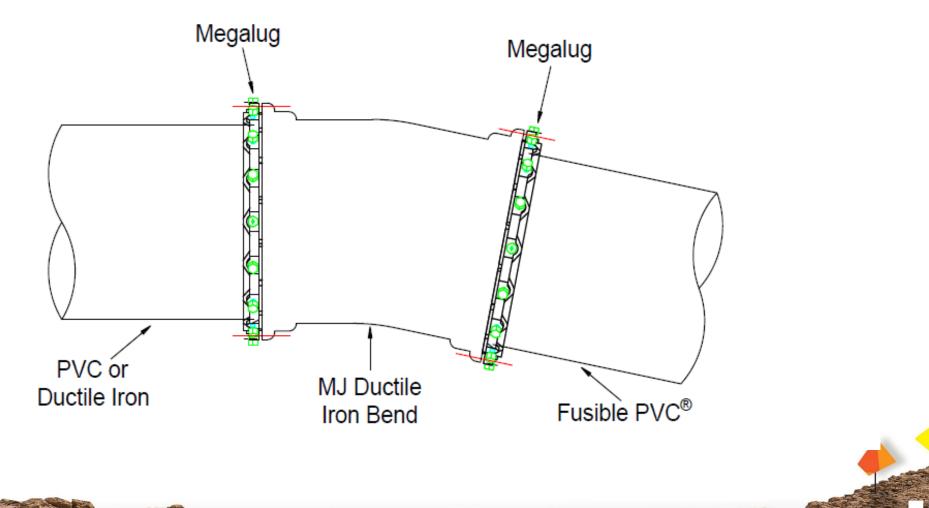




# Pipe Pull Info

- Total Length of HDD = 5400 LF
- Install Time = 18 hours
- 24" DR 18 DIPS FPVCP = 71.08 LBS/FT
- Total weight of pipe string = 383,832 LBS
- **Recommended Pull Force** = 307,000 LBS
- Average Pull Forces per rod = 56,500 LBS
- Average Pull Forces over last 2000 LF = 60,000 LBS
- Highest pull force/rod = 83K LBS




# Construction – Pressure Test and Disinfection

- DI end caps with megalugs
- Marshall Brothers flushed the pipe for 3 full volumes of water to remove air from the pipe
- Pressure test performed for 2 hours @ 150 PSI (at the surface)
- Disinfected utilizing a chlorine solution
- New water main was connected to existing ductile iron main



## **Reconnection Details**

## Fusible PVC<sup>®</sup> Pipe Detail



## UNDERGROUND CONSTRUCTION TECHNOLOGY

# Fusible PVC Advantages over HDPE pipe

- 2.4X safe pulling stress of HDPE pipe
- ~½ weight of HDPE pipe for larger sizes
- Standard fittings for reconnection and long-term maintenance
- Resistant to disinfectant oxidation
- No relaxation period

- Long term vertical loading pipe stiffness exceeds HDPE pipe
- Low failure rate

- Scratch and abrasive resistance with Rockwell hardness >2X HDPE pipe
- Buoyancy modification advantages due to SG

# Welded Steel Pipe Advantages

- Strength to weight ratio
- Tensile Strength
- Distance capability
- Ability to impact (Use of "hammer")



# Fusible PVC Advantages over Steel in W/WW and conduit applications

- Corrosion resistant
- Tighter bend radius
- Less layout room required
- Assembly with data logged heat fusion versus welding
- Ability to de-bead remotely
- Reduced power cable ampacity
   loss



UNDERGROUND CONSTRUCTION TECHNOLOGY THE UNDERGROUND UTILITIES EVENT | February 7-9, 2023 | Orlando, FL

Reconnection with standard fittings

# Long Pulls List

- FPL Indian River 7020 LF 30" FPVC Casing X 2
- Kiawah Island 6980 LF 16" FPVC Water Main
- Paris Island 6,400 LF 16" FPVC Force Main
- Pineda Causeway 6,200 LF 16" FPVC Reclaim X 2\*
- Padre Island 5,545 LF 18" FPVC Water Main
- Padre Island 5,535 LF 4" FPVC power
- Middlesex March Main 5,400 LF 24" FPVC Water Main
- Hathaway Bridge 5,400 LF 24" FPVC Water Main
- Lady's Island 5,335 LF 16" FPVC Force Main

## 5,400 LF 24" DR 18 Fusible C900 HDD Crossing

UNDERGROUND CONSTRUCTION TECHNOLOGY



Chad Andrews, P.E., Underground Solutions Regional Manager Ph: 229.378.0315 <u>Candrews@aegion.com</u> Tallahassee, FL

**Questions?** 



Jose Pereira, P.E., Dewberry Senior Associate, Senior Project Manager Ph: 918-693-0659 jpereira@dewberry.com Panama City, FL