Why Did the Tunnel Cross the Road?

72" Water Line Tunneling Considerations

Introduction

- ALWAYS ask three questions for ANY tunnel
- 1. What size pipe?
- 2. How long is the drive?
- 3. What are the ground conditions?
 - Without Geotech only preliminary method can be determined

These three questions will narrow your list of choices/options

Tunneling Methodology

Two Pass Tunnels

- → Typically for water lines; require support
- Pass 1. Install steel liner
- → Pass 2. Install carrier pipe

Two Pass Tunnels

→ Pass 1. Install steel liner

- Build tunnel (liner plate, ring beam and lag, etc.)
 - Hand tunnel
 - Excavator shield
 - TBM
- Direct jack steel casing
 - Auger boring
 - TBM
 - MTBM
 - EPBM

→ Pass 2. Install carrier pipe

- Grout floor bottom for pipe carrier to travel on
- FRP, RCP, Steel, etc.
 - Pipe carriers
 - Jacking frame

72-Inch Diameter Tunnel Options

Hand Tunnel

- Relatively short drive lengths with exceptions
- → Install size 42"+
- → Small pit size
 - Only need room for haul unit with muck bucket
 - When pipe jacking, need room for hydraulic cylinders

Hand Tunnel

- Noise considerations: Low
- → Traffic effects: One lane closure (typically)
- → Install rate: 10ft on a good day (size dependent)

Excavator Shield

- → Capability of 1000+ ft runs
- → Install size 100"+
- → Large pit size
 - Need room to launch machine
 - Dependent on pipe length

Excavator Shield

- Noise considerations: Medium to high
- Traffic effects: Depending on machine size
- Install rate: 20-40 ft on a good day (pipe jacking)

Tunnel Boring Machine

- → Capability of 1000+ ft runs
- → Install size 48"+
- → Large pit size
 - Need room to launch machine (sometimes longer than pipe)
 - Dependent on pipe length
- → Crew size ~6 workers

Tunnel Boring Machine

- Noise considerations: Medium to high
- Traffic effects: Depending on machine size but can be down to one lane closure
- Install rate: 40 ft on a good day (pipe jacking)

Tunnel Boring Machine

- → Closed Face is not pressurized head!
- Confirm head specifications with manufacturer

Microtunnel Boring Machine

Pipe Jacking Operation

Controlled from Surface

→ Steerable to Line and Grade

→ Above or Below Water Table

Microtunnel Boring Machine

- → Capability of 1000+ ft runs
- Install size 30"+
- → Small machines typically stay in the 500 ft range
 - Don't have enough power
- → Large pit size
 - 30" machine requires about 12' round shaft
 - Dependent on pipe length
- → Crew size ~ 6-10 workers

Earth Pressure Balance Machine

- → EPBMs monitor and maintain earth pressures by balancing the machine advancements and excavation rates
- Equipment layout is project specific
- → Capability of 1000+ ft runs
- → Install size 100"+
- → Large pit size
- → Crew size ~10 workers

Earth Pressure Balance Machine

Earth Pressure Balance Machine

Considerations For Tunneling a 72-Inch Pipe

Above Ground Impacts

→ Pit Limits

Choose
 methodology based
 on excavation
 limitations

Deep Excavation in Unstable Soils

Design pit and alignment to accommodate soils

Settlement Monitoring

How and when

Underground Obstacles

→ Groundwater

Work uphill or downhill

→ Floating Boulders

How to handle over-excavation of tunnels

→ Drilled Shafts

 Above ground and below grade accommodations for vertical piers

Underground Obstacles

Permitting

- Limited methods and flexibility
 - Design with the permit in mind
- **→ Variances**
 - Engineering justification

Permitting

- Limited methods and flexibility
 - Design with the permit in mind
- **→ Variances**
 - Engineering justification

Closing Remarks

- Trenchless Technology Methods each have their place
- Many things to consider when going trenchless
- No two tunnels are the same
- What is an appropriate method based on pipe requirements?
- Constraints to that method?
- After these two questions, may be back at square one

Questions

Ben McCray BCMcCray@lan-inc.com

Philip Wheat PBWheat@lan-inc.com

