

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

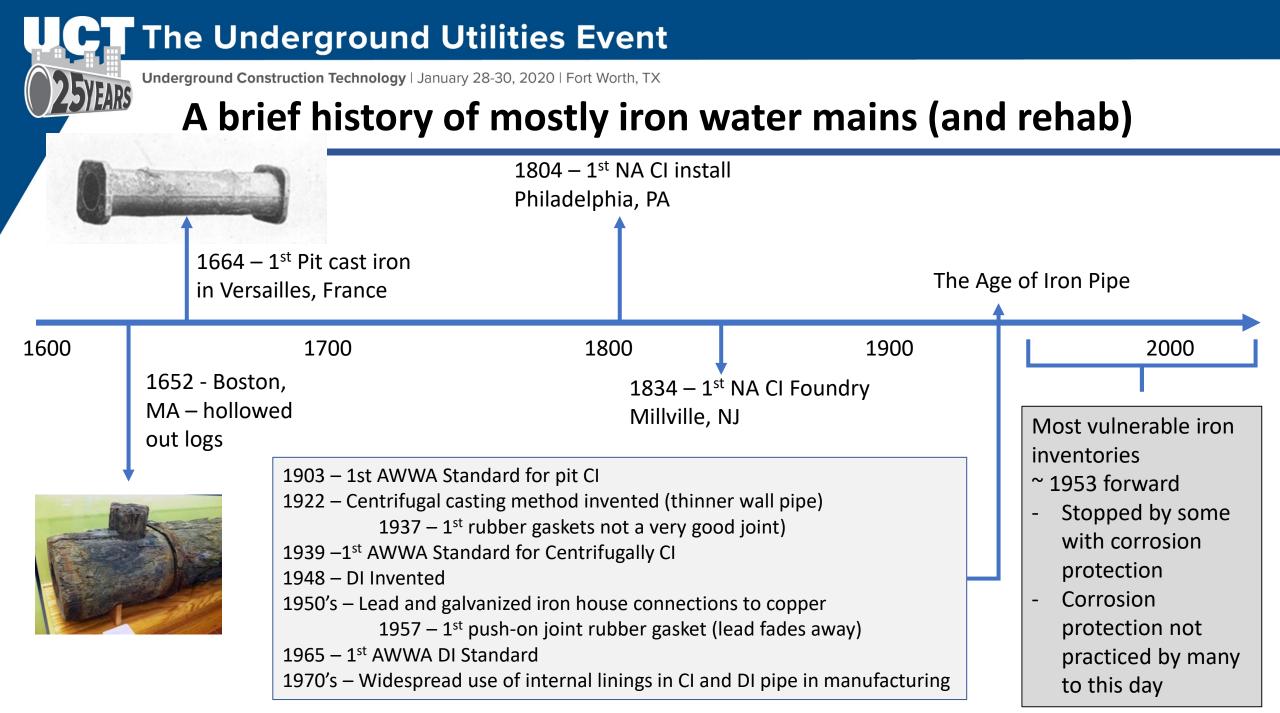
Ongoing Evolution of Pressure Pipe Rehabilitation

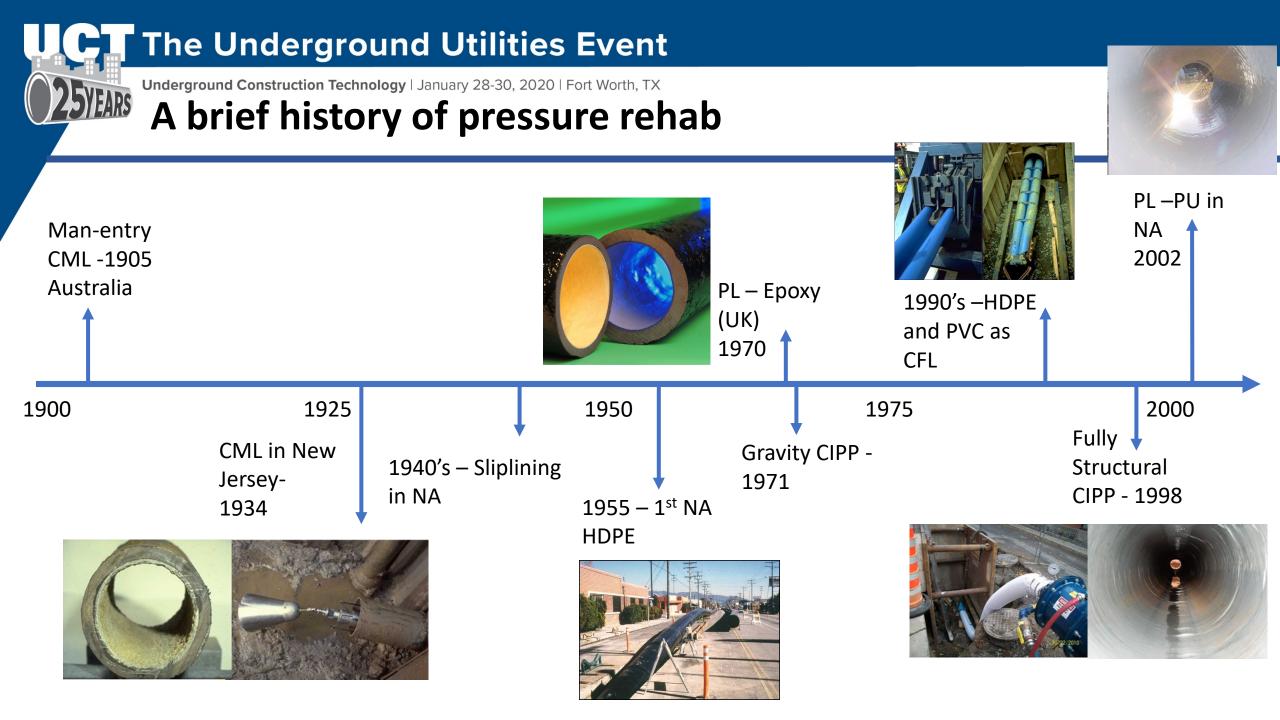
Chris Macey, P. Eng. Americas Technical Practice Lead

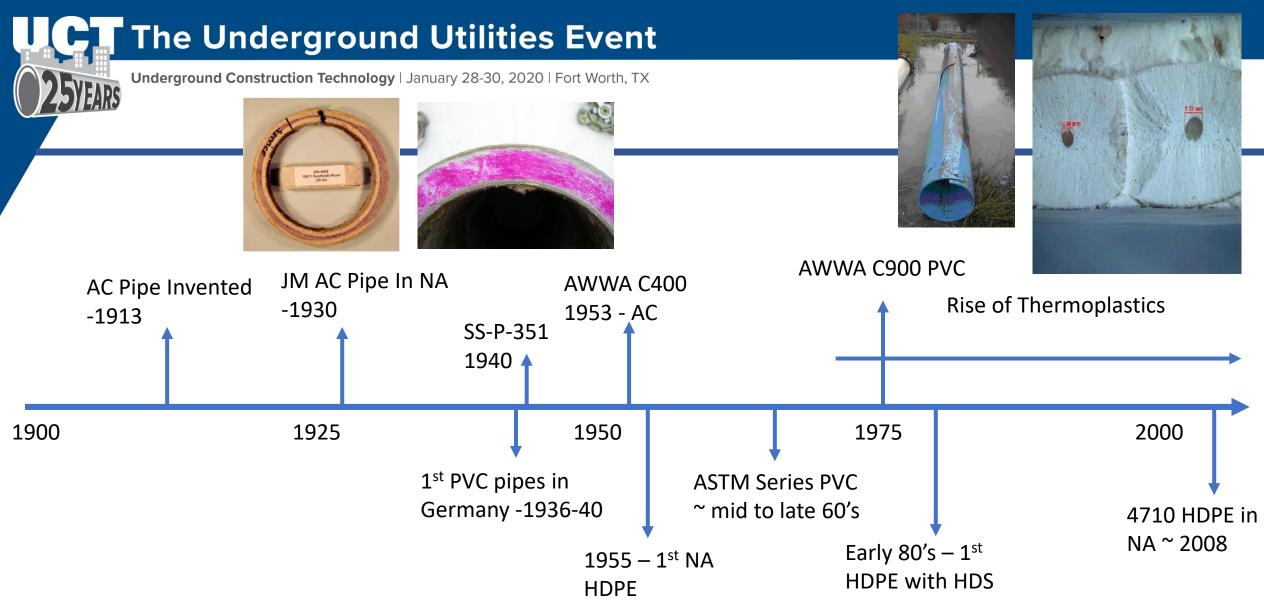
Condition Assessment and Rehabilitation

Conveyance Infrastructure

Andrew Costa Vice President of Sales, East Region Insituform Technologies, LLC




Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX


Overview

- A brief history of water mains and rehabilitation
- Relining Technologies and M28
- AWWA White Paper "Structural Classifications of Lining Systems - Suggested Protocol for Structural Product Classification"
 - Problem Definitions
 - Functional Objectives of Pressure Pipe Linings (Watertightness)
 - Testing to Meet Design Objectives
- There's a lot going on out there...
 - New and Developing AWWA Standards

A brief history of everything else – what rehab technologies will work on these materials?

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

150

Woven

150

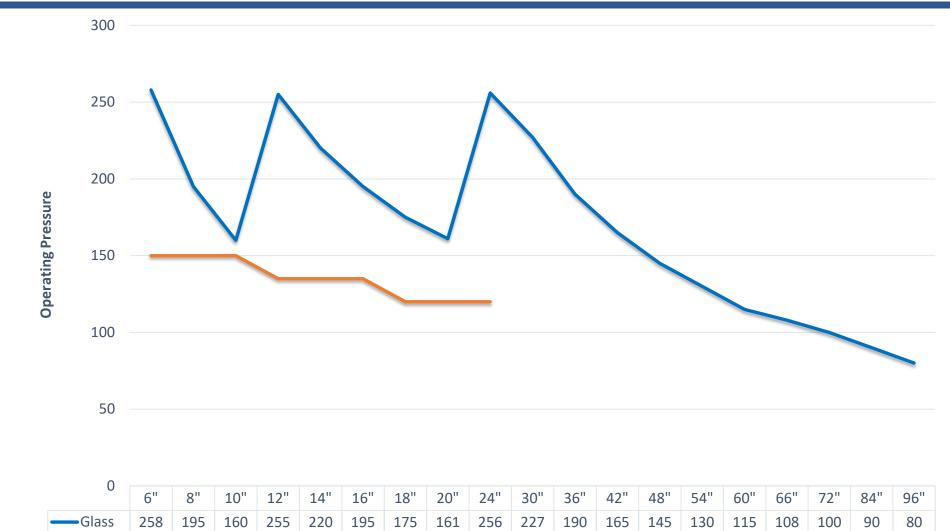
150

135

135

135

120


120

120

Class IV CIPP Liner Material Advancements

Composite Tube Materials

- Advancements in Fiberglass
- Increased Technical Envelope

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

AWWA M28

- Problem definitions
- Technology overview
- Matching problems to technology
- Planning and delivery considerations
 - Logistical Considerations (maintaining service and communications issues)
 - Overall Programing
- Common approaches to pipe prep for lining technologies
- Qualitative overview of Structural Lining

Pipeline Renewal Methods		1	
Distribution System Water Qu Hydraulic Improvement, 3 Structural Improvement, 5	Chapter 7	Cured-In-Place Pipe Lining Techniques	
Water Main Condition Evalua Prioritization, 6 Costs and Benefits, 7 Rehabilitation Solutions, 7 Selection of Rehabilitation So Reference, 10 Preconstruction Activities Advance Planning Considera Preparation of Plans and Spec	Chapter 8	Sliplining	I
Water Main Rehabilitation Co Maintaining Service Bypass Piping, 15	Chapter 9	Internal Joint Seals	
Community Relations, 18 Summary, 18 References, 18 Pipeline Cleaning Methods . Flushing, 19 Air Scouring, 20 Mechanical Cleaning Technic Fluid-Propelled Cleaning Dev Metal Scrapers, 25	Chapter 10	Pipe Bursting	
Cleaning by Power Boring, 25 Ball Cleaning, 32 References, 32 Cement–Mortar Lining, 33 Reference, 37	Chapter 11	Reinstatement of Service Laterals	
Spray-On Polymer Lining Definition of Polyurea Materi Reference, 46	Chapter 12	Cathodic Protection Retrofits	
	Chapter 13	Program Management	
\rightarrow	Appendix A	Structural Lining Design Issues111	

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

This is not just a North American Issue

- In ISO 11295, subcommittee TC138/SC8 'Rehabilitation of pipeline systems' has published structural classifications for pressure pipe liners which are closely aligned with those of AWWA Manual M28
 - Class D (non-structural) through Class A (fully structural) as opposed to Class I through IV
 - Similar qualitative measures
- In NA, the AWWA sub-committee on 'Structural Classifications of Lining Systems' has produced a Suggested Protocol for Structural Product Classification
- While much is the same there are subtle differences in definitions, terminology, and technical approach

Liner characteristics	Class A	Class B	Class C	Class D				
Can survive internally or externally induced (burst, bending or shear) failure of host pipe	~	_	_					
Long-term pressure rating \geqslant maximum allowable operating pressure (MAOP)	~	_	-	_				
Inherent ring stiffness ^a	~	~	b	b				
Long-term hole and gap spanning at MAOP	~	√c	~	_				
Provides internal barrier layer ^d	~	~	~	~				
^a The minimum requirement is for the liner to be self-supporting wh	en pipe is depres	surized.						
^b The liner relies on adhesion to the host pipe to be self-supporting when depressurized.								
^c The liner becomes sufficiently close-fit for radial transfer of inte	rnal pressure stre	ess to the host p	oipe, either durin	g installation				

within a short period from initial application of operating pressure.

The liner serves as barrier to the corrosion, abrasion and/or tuberculation/scaling of the host pipe and to the contamination of the pipe contents by the host pipe; it also generally reduces surface roughness for improved flow capacity.

ISO Structural Classifications

LINER CHARACTERISTICS	NON- STRUCTURAL	SEMI-STR	FULLY STRUCTURA		
	CLASS I	CLASS II	CLASS III	CLASS IV	
INTERNAL CORROSION BARRIER	YES	YES	YES	YES	
BRIDGES HOLES/GAPS AT PIPE OPERATING PRESSURE	NO	YES	YES	YES	
INHERENT RING STIFFNESS	NO (depends on adhesion)	NO (depends on adhesion)	YES*	YES*	
LONG-TERM INDEPENDENT PRESSURE RATING ≥ PIPE OPERATING PRESSURE	NO	NO	NO	YES	
SURVIVES "BURST" FAILURE OF HOST PIPE	NO	NO	NO	YES	

AWWA Structural Classifications

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

ISO's Journey from Qualitative to Quantitative taught us some subtle lessons

ISO Class A	Class B	Class C	Class D
Independent		Interactive	
	O°°	000	
loose-fit close-fit	inherent ring stiffness	relies on adhesion	relies on adhesion
Fully structural	Semi-st	ructural	Non-structural
AWWA Class IV	Class III	Class II	Class I

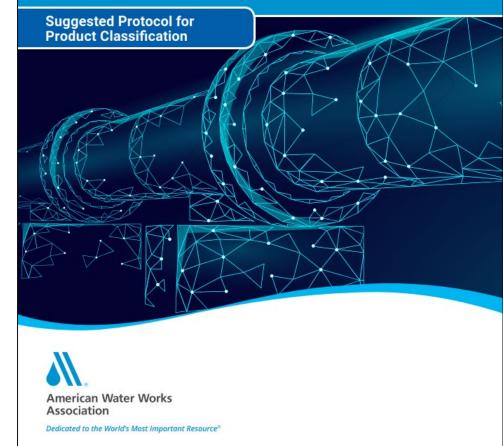
- Important: the full ISO defined terms *independent pressure pipe liner* and *interactive pressure pipe liner* refer to action of the liner in resisting *internal pressure* only.
- Structural action of a flexible liner in resisting <u>external loads</u> is always interactive: enhanced by restraint of host pipe and/or dependent on support from surrounding soil.

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Where we are ? – Structural Classification Objectives

Table 1: General S	tructural Cla	assifications	Objectives			
	Non- Structural		ructural active)	Fully Structural		
Liner Characteristics	Internal Coating	Hole and gap span	Hole and gap span + ring stiffness	Structural Resistance for all specified loads (internal & external)		
	Class I	Class II	Class III	Class IV		
Internal corrosion protection	*	~	~	~		
Reliable adhesion to the host pipe	See Note 1 Below	~	See Note 2 Below	See Note 2 Below		
Hole and gap span at MAOP		~	~	~		
Inherent ring stiffness (hydrostatic pressure or vacuum loads only)	See Note 1 Below	See Note 1 Below	~	*		
Positive connection to service taps and sealed at other discontinuities (water tightness)			~	~		
Inherent ring stiffness (all external, hydrostatic and vacuum loads)				~		
Pressure rating of liner ≥ MAOP of host pipe				*		
Liner survives host pipe failure				~		

¹ The Owner/Engineer must specify whether vacuum loads exist. For Class I and II systems, this is addressed through reliable adhesion to the host pipe, which is a characteristic of all Class II and some Class I linings.


² For Class III and IV linings, adhesion is not required to develop ring stiffness. However, it may be necessary to achieve a watertight seal (for example, where services are reinstated robotically. There are also situations where adhesion is not desirable, such as above ground applications with broad temperature swings.

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

- Structural Classification of Linings Suggested Protocol for Product Classification
 - Takes qualitative concepts to a quantitative format
 - Provides guidance on design and product selection for all lining products
 - Provides illustrative examples of sound engineering judgement to go beyond current design code

Structural Classifications of Pressure Pipe Linings

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX Some Practical Aspects of the AWWA Structural **Classifications Framework**

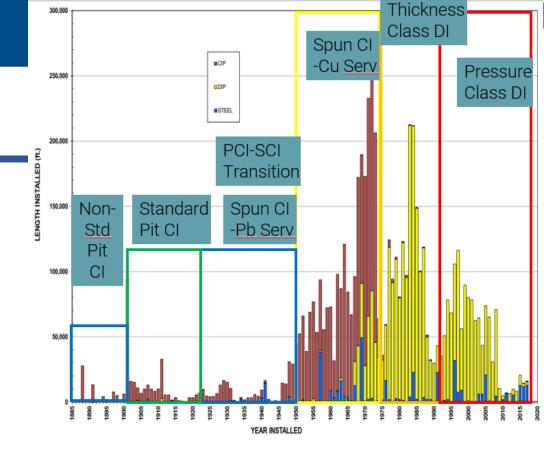
- Alignment of Lining Application Requirements with an Owner's Design Objectives
 - When is a Class IV (or any other Class) liner really a Class • IV liner???
 - Need to match products to Owner's Design Objectives •
 - Owner's design objectives many be similar but often vary ٠ considerably

How Do We Do This?

A. Problem Definition Statements – The Owner/Engineer needs to quantify failure applied loads and design condition

B. Type Tests – the products need quantifiable measures of short and long term mechanical/chemical resistance properties

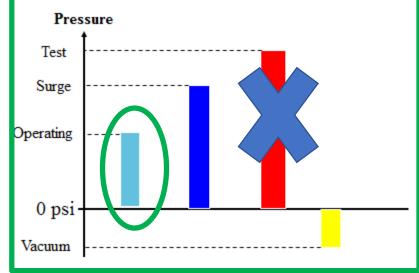
C. Acceptance Tests – How we measure in the field that we met the design objectives


Structural	Table of Contents
Classifications	1. Introduction
of Pressure Pipe Linings	2. Acknowledgments
Suggested Protocol for Product Classification	3. Referenced Documents
	3.2 AWWA Standards
AWWA Committee Report	3.3 DIN Standards
	3.3 DIN Standards
	3.4 EN Standards
	3.6 NSF/ANSI Standards
	3.7 Other References
	4. Terminology
	4.1 Definitions
	4.2 Abbreviations
	5 Alignment of Lights Application Desvicements With an Owner's Design Objectives - O
	5. Alignment of Lining Application Requirements With an Owner's Design Objectives 9
	5.1 Problem Definition Statement
	6. Structural Classifications of Pipelines
	6.1 Class I Linings
	6.1.1 Typical design objectives10
	6.1.2 Typical product considerations10
	6.2 Class II and III Linings
	6.2.1 Typical design objectives
	6.2.2 Typical product considerations
	6.3 Class IV Linings
	6.3.1 Typical design objectives
	6.3.2 Typical product considerations
	7. Structural Classifications Summary14
	8. Testing to Align Problem Definition With Product Selection and Structural Classification

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Problem Definition Statements

- Define the objectives of the lining project in terms of a problem statement and specific design requirements including a summary of:
- 1. The host pipe description
 - (material, year of manufacture, diameter, wall thickness, pressure class, joint type, etc.),
 - horizontal/vertical alignment,
 - the major deficiencies and deterioration mechanisms intended to be addressed and
 - general chemistry of the fluid to be conveyed.



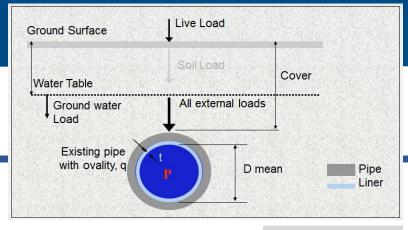
Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

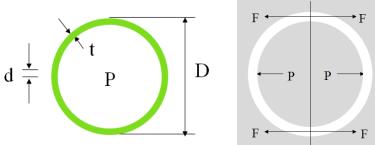
Problem Definition Statements

Define the objectives of the lining project in terms of a problem statement and specific design requirements including a summary of:

- 2. All relevant internal pressures to be resisted by the lining system, including
 - Maximum applied pressure (MAP),
 - Maximum applied operating pressure) MAOP,
 - Occasional surge and recurrent surge (if applicable),
 - Vacuum pressures (if applicable) and
 - The intended magnitude and duration of the test pressure.

It's a leakage test not a structural test. Run it as one.


Determine structural adequacy through mechanical property review



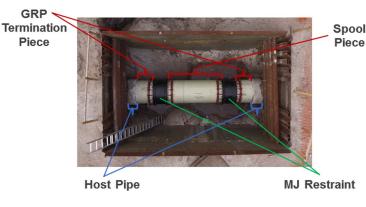
Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Problem Definition Statements

- Define the objectives of the lining project in terms of a problem statement and specific design requirements including a summary of:
- 3. All relevant external loads to be resisted by the lining system including
 - the load duration
 - Relevant loads
 - Earth and groundwater loads with design duration if not intended to be long-term loading; and
 - Live loads implied short-term duration unless otherwise stated).

Longitudinal Design
Limit State Loads CFRP Internal pressure
Rupture (Thrust, Poisson) + Temperature
Debonding Internal pressure (Thrust, Poisson) + Temperature
Buckling Temperature

Zarghamee

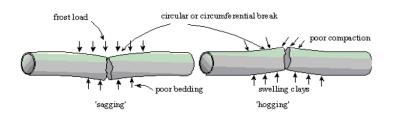


Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Problem Definition Statements

- Define the objectives of the lining project in terms of a problem statement and specific design requirements including a summary of:
- 4. Practical design considerations to meet functional requirements of the lining system such as
 - The requirement to reinstate water services in a manner that does not compromise the overall hydrostatic integrity of the system.
 - Overall hydrostatic integrity requirements at closure, for example
 - Ability on to repair the lined pipe
 - Ability to tap the rehabilitated pipe in the future

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX


Problem Definition Statements

Define the objectives of the lining project in terms of a problem statement and specific design requirements including a summary of:

- 5. The nature of the failure mode of the host pipe to be considered in design
 - Particularly important in instances where a Class IV Structural Classification is desired.
 - Brittle circumferential failures versus pitting corrosion
 - Burst, bending and shear requirements

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Taking Qualitative Concepts to Quantitative Measures

													Table 3	B: Acceptanc	e Testing			Property	Technology	Test Method(s)	Acceptance Criteria
able 1: General Structural Cla	ssifications O	bjectives			Table	2: Type Testi	ng			Property	Technology			order for a linin			1	All Class I, II &	III attributes P	LUS:	
	Non-Structural	Semi-Structu	ral (Interactive)	Fully Structural		order for a linin					& III attributes Some	PLUS:	test met	hods listed for			4	Adhesion	Some Class IV	Per Class I, as required	Per Class I-III, as required
Lining System Characteristic	Internal coating	Hole span	Hole span +	Structural resistance for all specified	test me	thods listed for Property	each property r	Test M		Adhesion	Class IV	Per Cla		Property Drinking Water	Technology	Test N				ASTM F2994 or ASTM F1216 (CIPP impregnation)	Verify compliance during CIPP impregnation process
Lining oystem onaracteristic	-		ring stiffness	loads (internal & external)		Potable Water Certification	All	NSF/ANSI (potable w				Any or D638; ASTM 8521; I		System Components - Health	All	Bacteriolo					Confirm fit and finish. Geometric anomalies compromising the lining system's hoop integrity shall be verified
	Class I	Class II	Class III	Class IV		Material	CML	ASTM C14		ľ	All Class IV	tensile		Effects						Manual and COSTM	through type testing and reflected in
ternal corrosion protection	✓	~	 ✓ 	 ✓ 		Properties Lining		(slump test	imp test			ASTM		Material Properties	CML, PL	Compress				Visual and CCTV inspection	design. Isolated circumferential fins or imperfections from lining through
ong-term adhesion o the host pipe	See Note 1 Below	~	See Note 2 Below	See Note 2 Below	Class I	Thickness System	All					and/or (tensile		Lining Thickness	CML, PL	Physical measurem					vertical or horizontal misalignment, offset(s) or directional change(s) shall be documented and reviewed with the owner/engineer for design compliance For anisotropic materials, tensile properties should be obtained in the hoop direction
lole span at MAOP		✓	 ✓ 	✓		Hydraulics	AII	ASTM D45					Class I							Any or all of: ASTM	
herent ring stiffness (hydrostatic ressure or vacuum loads only)	See Note 1 Below	See Note 1 Below	~	~		Adhesion	Some Class I	substrate) ASTM D72			All Class IV		012001			me Class I Visual and inspection				Any or all of: ASTM D3039; D638; ASTM D3039; ASTM D2290; ISO 8513; ISO 8521 (tensile properties, hoop direction)	
/ater tightness (positive onnection to service taps and		~				All Class I attr		(concrete s				term b									Test values ≥ design submittal
ealed at termination points r other discontinuities)		*	l ·	× I		Adhesion	All Class II	Per Class I Any or all o	Class	Resists all internal and external pressures				Adhesion	Some Class I				CIPP		Average of eight (8) measurements around circumference; not less than 87.5% of design thickness at any point (excluding coating). Although hoop tensi strength (force/unit area) is an importan
herent ring stiffness (all tatic and dynamic external, vdrostatic, and vacuum loads)				~			All Class II	D790; ISO 11296-4, Ar B (initial fle properties, bending) Any or all o D2990; ISC	SO' IV 4, Ai 1 fle ies, <u>3)</u>							ASTM D45 substrate)					
ressure rating of lining MAOP of host pipe				~		Hole Span @ MAOP					CIPP	ASTM F1216 (CIPP i			1	ASTM D72 (concrete :		V Resists all internal and external pressures	ts all hal and		parameter for reinforced CIPP laminates hoop load capacity (force/unit width) is equally or even more important. Laminal thickness can vary without changing the amount of reinforcing fibers used. As
ining survives anticipated					Class							ASTM		All Class Latti Adhesion	s I attributes PLUS: m All Class II Per Class I		Droco				
host pipe failures 1 The owner/engineer must specify whether vacuum loads exist. This is addressed through reliable adhesion to the host pipe, which is a characteristic of all Class II and some Class I linings, or inherent ring stiffness. 2 For Class III and IV linings, adhesion is not required to develop ring stiffness. However, it may be					ï			ISO 11296- & D (flexura Supporting			CFRP ³ SL (FRP)	ASTM ASTM ISO 75		Hole Span @ MAOP All Class II	ASTM D79 or ISO 112 Annex B (ir				Wall thickness measurements:	an example, the thickness may increas by adding felt material to increase the external load-resisting capacity. In this	
r of usass in and i'v mings, addression is not required to berefor ing stimless. However, it may be necessary to achieve a waterlight seal (for example, at services and lining terminations). There are also situations where adhesion is not desirable, such as applications with broad temperature swings and in Class IV linings where the host pipe is anticipated to experience brittle failure modes.						Water Tightness	All Class II	from end s fittings ma	na		CIPP*	ISO 10 analysi	Class			flexural pro axial direct ASTM F12				Restrained samples: ASTM F1216, Section	example, as the thickness increases, the tensile strength (psi) decreases. However, the hoop load capacity (lb/
						Hydrostatic	<u> </u>	as applicat				ASTM or PPI	"			8.3 (pressi 2 times M/				8.6; Measurements per ASTM D3567	in.) remains the same or may slightly increase. Thus, although the hoop tensi
						Integrity at Services	All Class II				SL (HDPE)	ASTM		Water Tightness	All Class II	MAOP + 5(bar), which					strength decreases, the internal pressur load capacity of the CIPP remains the
												ANSI/#		rightness		or ISO 112					same or slightly increases. In this conte hoop load capacity, not wall thickness of
												ASTM				7 (pressure 1.5 times N					resulting tensile strength, is a measure
											SL (PVC)	ANSI/A		All Class I & II	attributes PLU	IS:					of pressure pipe structural performance Flat plate sampling methods per ASTM
									impleme	nted at the discr	CFRP used for t retion of the own to execute for C	ier/enginee	01	Adhesion	Some Class III	Per Class I					F1216, Section 8.1.2 may be used in lieu of restrained samples in accordance wi manufacturer's recommendations and a
									long-tern	n performance.	lf available, HDE urst and long-te	test result	III			ASTM D79			SL (HDPE)	AWWA M55 or ASTM F2164	directed by the owner and/or engineer. Hydrostatic leak test
														Ring Stiffness	All Class III	or ISO 112 Annex B (ir			SL (FRP)	AWWA M45	Hydrostatic leak test
																flexural pro			SL (PVC)	AWWA C605	Hydrostatic leak test

5 AWWA C305 applies to CFRP used for the renewal and strengthening of PCCP. Alternative acceptance criteria may be established at the discretion of the owner/engineer for applications involving different host pipe materials.

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Some challenging issues

- It's a short list of a pretty long list but we'll focus on a couple of testing issues and one of design
 - Functional Requirements
 - Hydrostatic integrity
 - At service connections
 - At closures
 - Surviving failure of the host pipe (to bond or not to bond)
 - Long term testing
 - Hydrostatic strength (hoop direction)
 - Flexural strength (in all directions)
 - Design
 - Having relevant design methods for radically different products
 - Acceptance Tests
 - Carrying out meaningful tests post installation to reasonably confirm design intent has been achieved

DESTINATION OF THE PARTY OF THE

The Underground Utilities Event

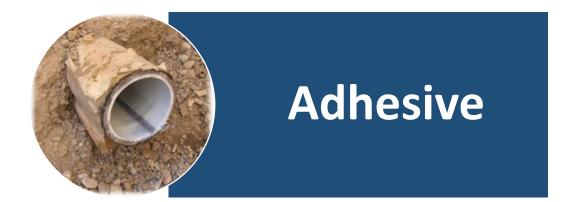
Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

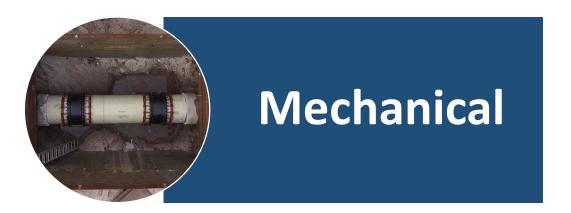
An Emphasis on Watertightness

Advancements in technology and best practices have renewed focus on watertightness

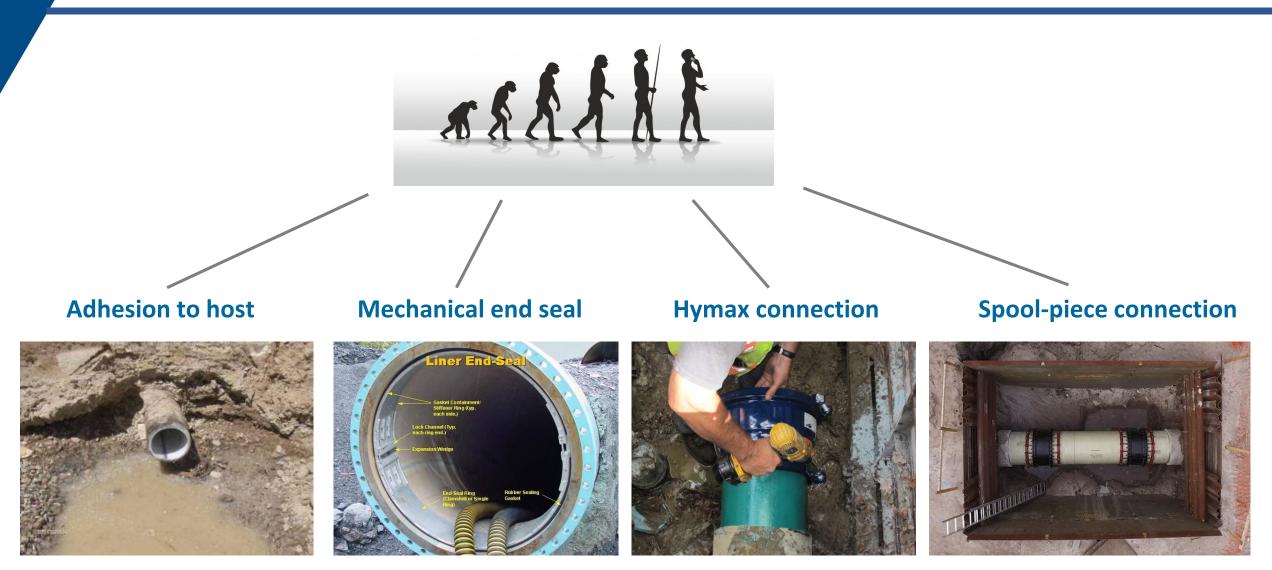
> Advancements and long-term expectations are evolving, influencing approach to end connections

Innovation in robotics, as well as long-term standards & expectations are evolving for service connections




Focus shifting to watertightness from a <u>long-</u> <u>term perspective</u>

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX


Watertightness – End Connections

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

The Evolution of CIPP Closure

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Watertightness – Service Connections

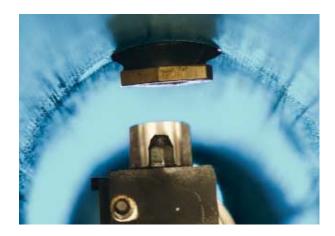
Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Historical Service Reinstatement Options

Adhesive reconnections (Relies on host pipe for watertightness)

Plug and drill method whereby liner adheres to host pipe and service corporation

Excavated mechanical reconnections


Involves open-cut excavation and installation of new mechanical connections at each service.

Robotic mechanical reconnection

Robotic installation of a mechanical fitting to provide a watertight internal connection

25YEARS

The Underground Utilities Event

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Old Robotics

- Reverse thread of protruding services
- Plug existing services
- Locate & Drill at connection (post lining)
- Install mechanical fitting

- Highly inefficient:
 - One at a time
 - Miles traveled for each segment
- Success rate just ok
- Limited to direct taps 1" and smaller
- Expensive

Need for updated and improved methods...

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Next Generation Internal Mechanical Reinstatements

Measurement probe

Consists of laser sensors and inspection camera

Mechanical fittings

Utilizes a patented push-in-place "Corpbite" system that maximizes pull-out force

Self-locating plug

Installed prior to lining to prevent resin migration

Cartridge loading system

Holds up to 8 plugs/mechanical fittings to maximize production

Drilling tool

Detects exact location of plug prior to drilling

Interface software

Provides operator with easy-touse interface for reinstating connections

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Robotic Equipment – Measurement Probe

Consists of laser sensors and inspection camera

Laser identifies corporation diameter and alignment to the host pipe

Camera mounted on the probe validates the current position of the corporation valve

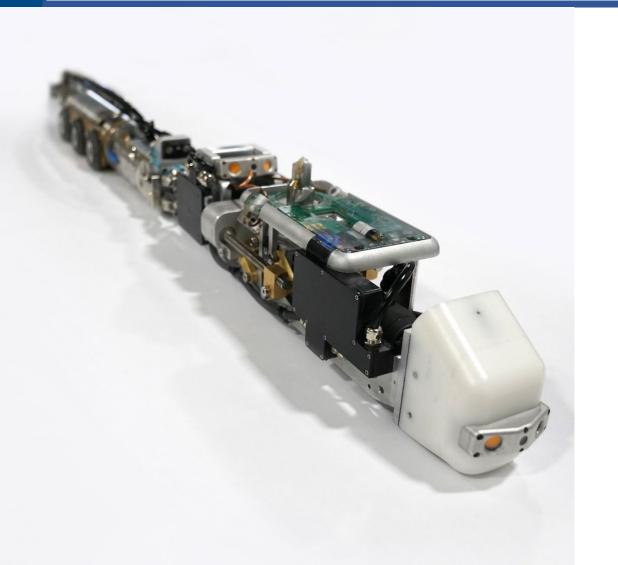
25YEARS

The Underground Utilities Event

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Service Relocation Device – Plug

Installed prior to lining


Prevents resin migration during cure

Magnetic array embedded into the rim of the device enables precise relocating after lining

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Robotic Equipment – Drilling Tool

Contains cameras, lights and lasers to assist operator with alignment as well as sensors to detect exact location of plug prior to drilling

Drills plug out post-lining

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Service Connection Hardware – Mechanical Fitting

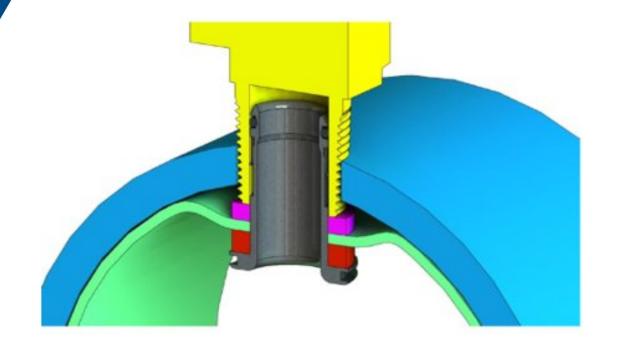
Manufactured utilizing specialized stainless steel materials and gaskets that are capable of withstanding long-term exposure

Utilizes a patented push-in-place "Corpbite" system that maximizes the pull-out force of the device while maintaining the low force required for installation

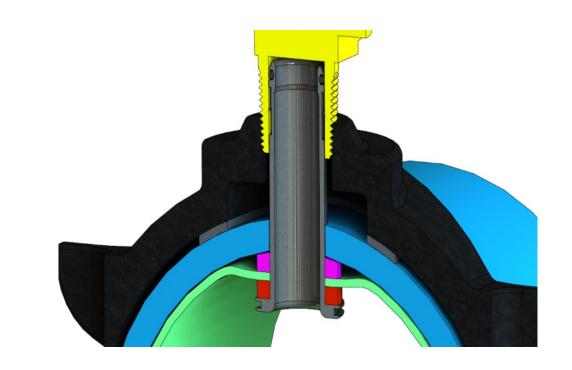
Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Robotic Equipment – Fitting and Plug Installation Tool

Cartridge system holds up to 8 plugs/mechanical fittings in order to maximize production


Each cartridge silo includes laser alignment tools and cameras for precise installation

25YEARS


The Underground Utilities Event

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Completed Watertight System

Direct tapped service

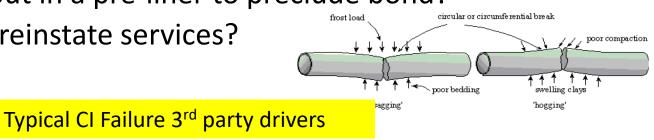
Saddle tapped service

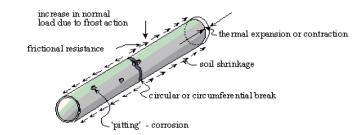
25YEARS

The Underground Utilities Event

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

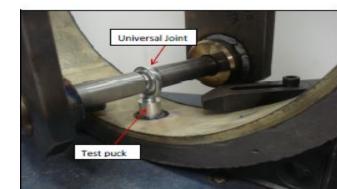
Completed Watertight System




Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Surviving failure of the host pipe – to bond or not to bond?

- Class IV liners are complex because the liners needs to survive a failure of the host pipe
- Excessive bond to the host pipe does not bode well in pipes that exhibit brittle fracture modes lined with brittle materials
- How does your host pipe fail? In brittle failure modes
 - Should I put in a pre-liner to preclude bond?
 - How do I reinstate services?


Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Where we are? – testing objectives

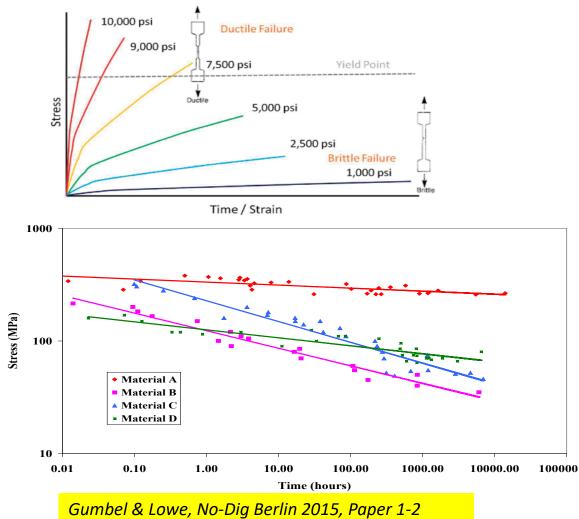
- ISO's product testing standards ISO 11297-4/ 11298-4 (CIPP for pressure sewers and WM's) brought a number of practical implications of current liner structural classifications into sharper focus.
- We face the same practical issues:
 - Design, test approaches, pending long term test results and
 - the demand to keep working while working to achieve consensus on a number of complex issues for a wide variety of products....
- Core objectives for both committees:
 - Common, objective and verifiable criteria based on sound engineering principles
 - Assessing *"fitness for purpose"* of Pressure lining products for different clearly defined applications.

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX


Short to Long term material properties

ASTM D1599/ISO 8521

- Need to understand short and long term response to load (continuous, short term, and cyclic)
- Long term hydrostatic strength
 - ASTM D2990 and/or ISO 899-1 (tensile creep)
 - ASTM D2837/D2992 HDB Testing
 - ISO 7509/10928 Long-term failure pressure
- Very limited HDB tests for CIPP and in-field composites to date
 - Cost of testing is very high; As reinforcing scheme changes, product response can change
- If short term response is used as an interim measure use it conservatively
 - ASTM D1599 Short-Time Hydraulic Pressure
 - ISO 8521 Determination of the apparent initial circumferential tensile strength
 - NA consensus on appropriate reduction factors ~ 4:1 reduction
 - ISO Standards focus on use of known long term response products only

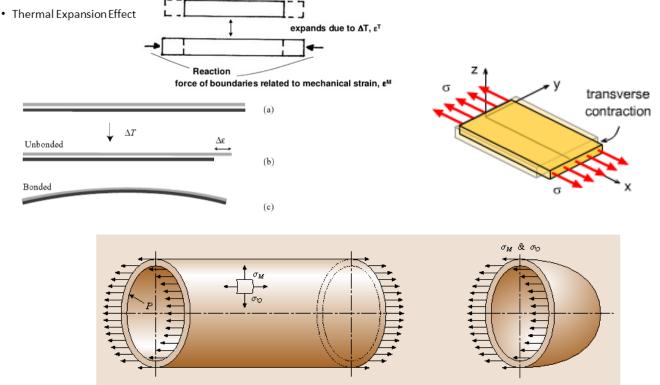


Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Hydrostatic Design Strength is not the only long term material issue

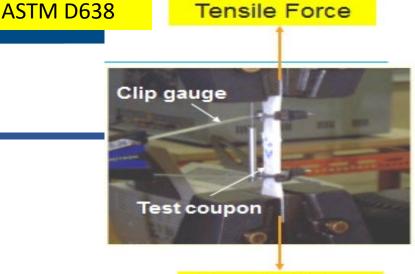
Understanding Creep Failure of Plastics, Jeffrey Jansen

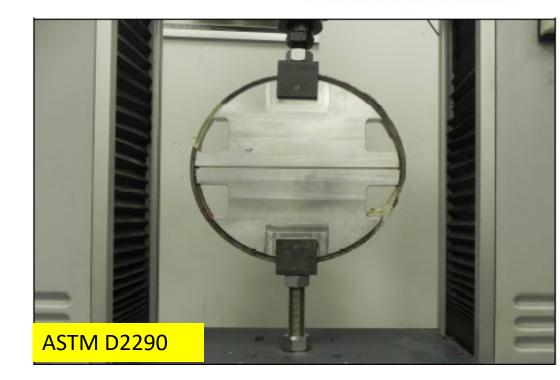
- Flexural strength diminishes over time at high stress levels
- Very little NA research on time dependent response of flexural strength to continued load application
- Established UK test for long-term flexural strength in dry, wet or acid conditions being adopted in ISO CIPP standards for both non-pressure and pressure applications
- Reduction factors from long-term creep stiffness tests are *an unreliable guide* to long-term strength response
 - Need to make better use of ASTM D2990 Tensile Creep Response and other testing regimen's


Time to Failure at Various Stress Levels

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX Design to the Product and the Application not an irrelevant standard

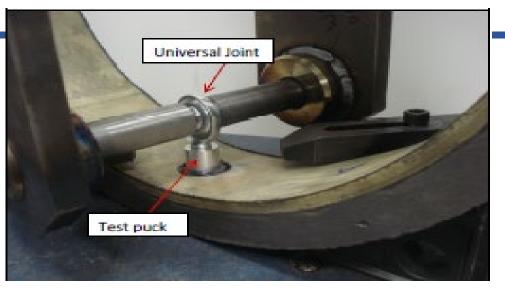
- Design methods need to reasonably match the products that they are intended for
 - It's seldom a perfect fit, but you need to assess the relevance of the design method to the product
- While ASTM F1216 has served the industry well for gravity, its evolution was based on:
 - Looking at flexure in the hoop direction only
 - Non-reinforced tubes Isotropic as opposed to anisotropic lining material behavior
 - Very low pressure
- Good Guidance for composite materials in AWWA Standard C305 for CFRP RENEWAL AND STRENGTHENING OF PCCP
- All WM rehab design needs to reflect the product and evolve to the problem

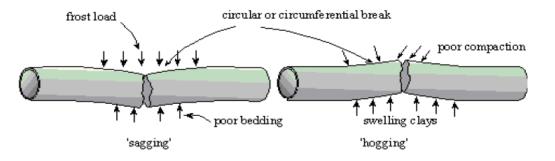



Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Testing after Installation

- Testing after installation needs to be related back to the design process
- Carrying out ASTM D638 Strip Tests alone to assess adequacy in the hoop direction can be very misleading
 - Consider ISO 527-4 rationale of Test conditions for isotropic and anisotropic fiber-reinforced plastic composites
 - Use of more direct measurement of hoop stress in an ASTM D2290 test or by the various methods of ISO 8521 referenced by ISO 11297-4 provides greater insight into tensile capacity of the "product", not just a piece of the product





Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Testing after Installation

- If your structural or functional design requirements require adhesion to the host pipe
 - Employ replicatable visual standards for surface preparation
 - Carry out adhesive testing to confirm it works
 - ASTM D4541/ISO 4624 (metal substrate); ASTM D7234 (concrete substrate)
- Consider the nature of your long term reliance on host pipe in design
 - Functional requirements are for localized bond at service connections
 - Mechanical reinstatement devices preclude this need
 - Comprehensive bond is counterproductive when your host pipe fails in flexure;

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

If the manufacturing is done in the field; we need to be very structured about Type Testing, Design Acceptance Tests and Process

- 1. Owner's problem definition and technology selection
- 2. Type testing by the product manufacturer
 - Confirm the short and long term mechanical properties
 - Confirm functional objectives (e.g. hydrostatic integrity at service connections)
 - Demonstration testing if you can't measure something directly

3. Design Process

- Protocol Submissions and Records
- 4. Acceptance Testing (verification tests)
 - Visual
 - Hydrostatic integrity
 - Confirmation of meeting design intent (confirmation of relevant mechanical properties)

ASTM D1599

ASTM D2992

Design basis – best we have is White Paper non-mandatory section

Wet out and Inversion Logs; ASTM F2994 or ASTM F1216 (CIPP impregnation)

Curing Logs – monitor for compliance with Design Intent

Sampling Approach to confirm design; White Paper and new AWWA Standard

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Closure

There's a lot going on out there in the world of Water Main Rehab

- Spray-on Polymerics AWWA C630 2019
- Structural Classifications White Paper fall 2019
- AWWA Pipe Bursting for Winter 2019/2020
- New AWWA M28 for 2020
- 1st AWWA CIPP for WM Rehab in 2020
- WM Sliplining Rehab for 2020

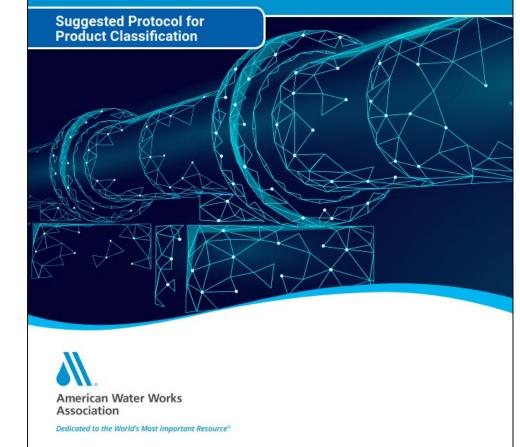
CIPP for pressure applications is considerably more complex than gravity sewer applications

- Don't be discouraged much knowledge and experience is in place to facilitate looking at increasing your tool box for small and large scale water main rehabilitation programs
- The release of the AWWA Structural Classifications White Paper provides considerable quantitative tests in your hands complete with some process to apply them
- Solve this generation of pipe rehab problems and move on to the next one

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

Queries

Chris Macey, P. Eng. chris.macey@Aecom.com


Andrew Costa ACosta@aegion.com

Structural Classifications of Pressure Pipe Linings

