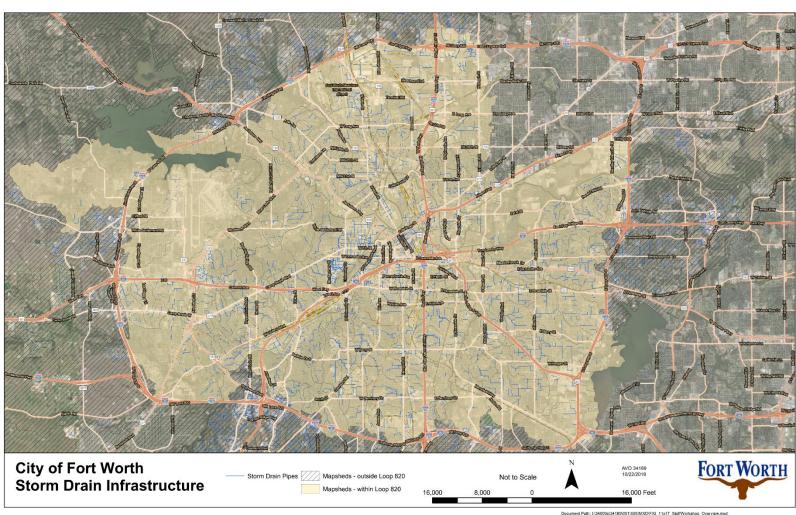

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

FORT WORTH'S STORM DRAIN REHABILITATION PROGRAM –

COWTOWN'S APPROACH TO WRANGLING STORM DRAINS

Presented By:
Michael Owen, PE
Matt Stahl, PE, CFM
Ben Pylant, PE, CFM
Preston Dillard, PE



Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

AGENDA

- Background
- Program framework
- Initial assessment
- ■Condition assessment
- Prioritize
- Corrective action
- Lessons Learned

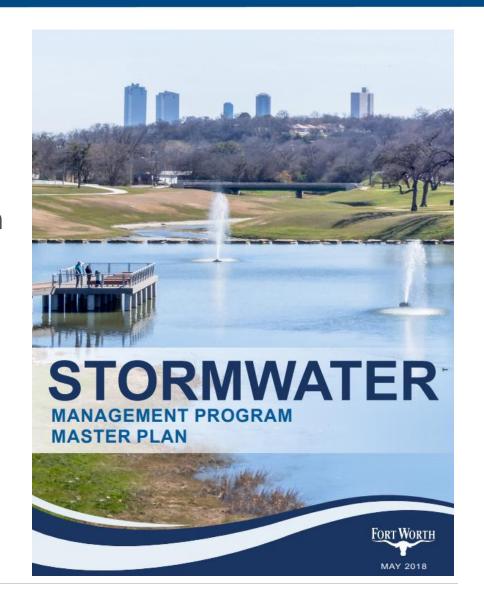
STORM DRAIN REHABILITATION

BACKGROUND

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

CFW STORM WATER UTILITY (SWU)

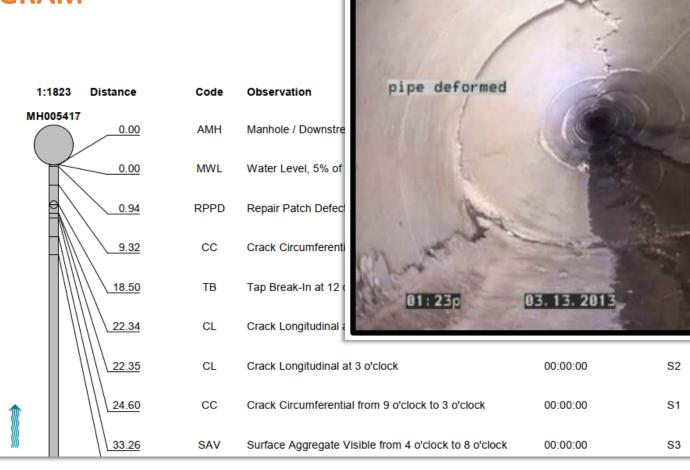
- ■SWU established in 2006
- ■Sold \$150M bonds
 - Maintenance Program
 - Planning
 - Development Services
 - Equipment/Technology
 - Flood reduction capital projects
 - Communications
- ■Transitioning from Bond Funds to "Pay Go"
- ■Storm Water Master Plan


Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

STORMWATER MASTER PLAN

- Developed strategic direction
- Identified Key Initiatives
- ■Level 1 Priority Storm Drain Rehabilitation Program

Prioritization Strategy:


Continue to expand the acquisition and effective use of data to inform programming decisions

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

STORM DRAIN REHAB PROGRAM

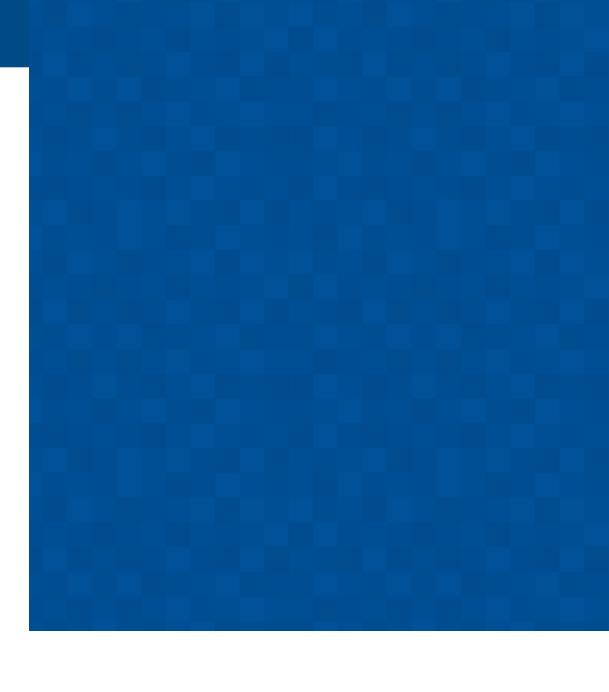
- ■SD rehab is a Priority Initiative for TPW
- **■**Objectives
 - Enhance safety of Fort Worth
 - Proactive vs reactiveO&M
 - Doing more with less
 - Improve level of service

107'10"

STORM DRAIN REHABILITATION

PROGRAM FRAMEWORK

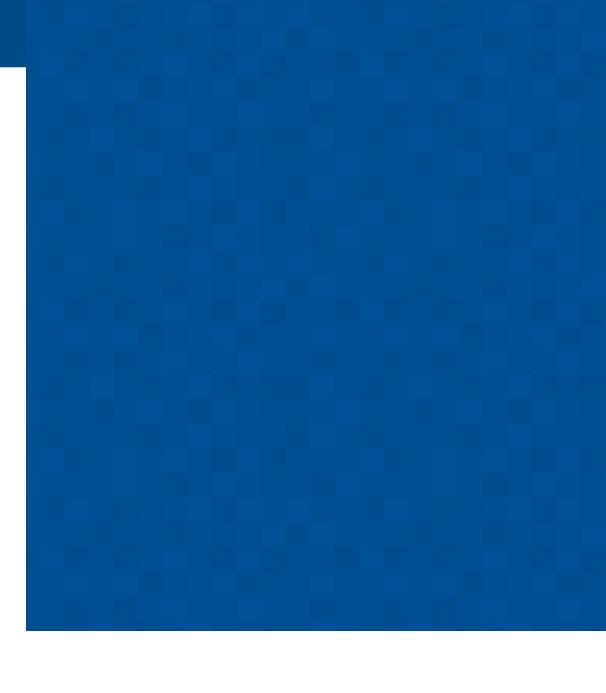
PROGRAM FRAMEWORK


- ■Define Level of Service (LOS) goals and Key performance indicators (KPIs)
- ■Program tasks
- Manpower

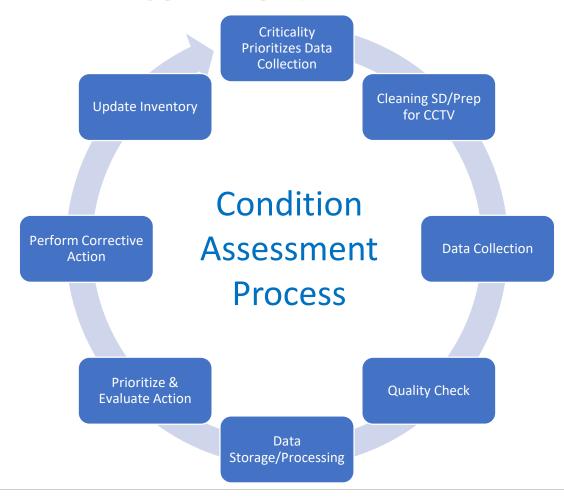
Program Task	Manpower
Cleaning and access	SWFOs
Inspection	Contract initially, then in- house
Assessment, needs identification, prioritization	Consultant
Corrective actions	Contract (best-value bid process) and supplement with SWFO in opportunistic areas

STORM DRAIN REHABILITATION

INITIAL STORM
DRAIN ASSESSMENT


INITIAL STORM DRAIN ASSESSMENT

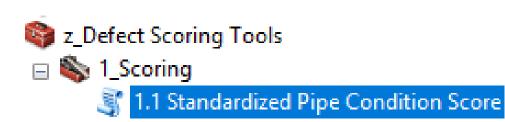
- Initial project prioritization
 - COF-basis
 - Consideration of proximity to structures
 - Easement status
- Easement research and verification
- ■Staff knowledge workshop
 - Discussed and gathered institutional knowledge
 - System maintenance, rehab, failure

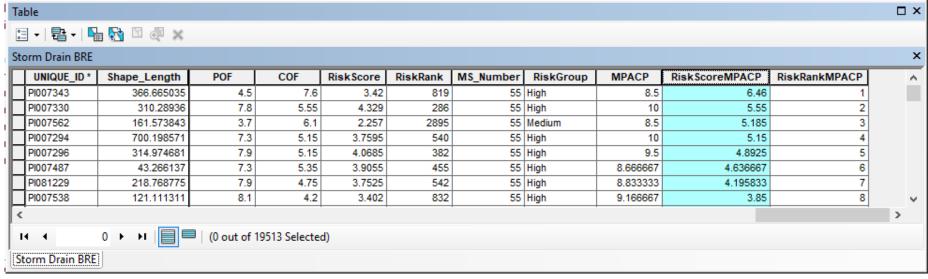

STORM DRAIN REHABILITATION

HOW TO EVALUATE STORM DRAIN CONDITION?

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

HOW TO ASSESS STORM DRAIN CONDITION?


CITY OF FORT WORTH – PROGRAM OVERVIEW


- ■Inspection approach:
- 1.Tiers 1 & 2
- 2.MH to MH (vs by pipe segment)
- 3. Condition score by pipe segment
- ■Scoring approach:
- 1.PACP with post-processing for storm drain defect structural defect/condition rating on scale of 1 to 10
- Goals:
- 1.Inspect 25-50 miles of system / year
- 2. Apply a proactive, strategic program
- 3. Utilize risk-based prioritization using custom GIS tools
- 4. Predictive condition modeling (LOF) using historical data

HOW TO ASSESS STORM DRAIN CONDITION?

- Use equipment and scoring for storm drains
- City plans to implement inhouse CCTV
- ■PACP-based
 Standardized Pipe
 Condition Score

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

1-PAGE SUMMARIES

- Summary of defects, considerations, and risks by pipe
- Rehabilitation method recommendations

STORM DRAIN REHABILITATION SUMMARY - PI012266

Pipe Information

Street: Clover Lane and Lafayette Avenue

Priority: Tier 1

Pipe Information											
Site ID	CCTV Video	CCTV Report	Unique Pipe ID	Start MH	Length (ft)	Size (in)	Pipe Shape	Building Intersect (y/n)	Building Intersect Value (5)	Easemen	
B - Clover and Lafayette	H005417 2017-08-30 10-	Thomas IN010944 Pi012258 MH005385 2017-09- 05 11-45 0000.pdf	P1012266	IN010944 - correct in current GIS	500	3' x 4'	Arch	y	\$0	n	

Description of Storm Drain

Description

Storm drain Pl012266 is located at Clover Lane and Lafayette Avenue on the west side of Fort Worth. This line contains Arch 3'x4' pipe that run southeast through residential lots and streets. The total length of this storm drain is approximately 500 feet long.

Defects

Corrosion was found at the base of the walls throughout much of the arch section. A structural point repair is recommended where the pipe has collapsed, as well as 15 ft upstream and downstream of the defects.

The pipe defects shown on the plan & profile sheet were identified during the most recent CCTV inspection (Aug/Sept 2017).

Potential Rehabilitation Methods

Recommended

- Spray-on methods (geopolymer, epoxy, cementitious)
- Spiral-wound

Not Recommended

- CIPP (lacks structural support)
- Slip-lining (better manhole to manhole)
- Pipe bursting (better manhole to manhole)

Estimated Rehabilitation Cost

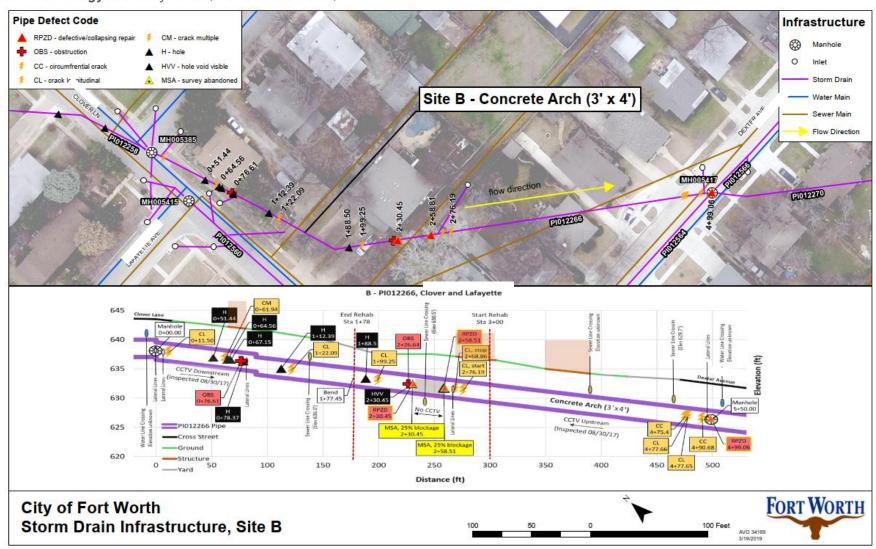
The estimated total cost for this point repair (100 LF) is anticipated to range between \$50K and \$80K

Site Specific Risks

Potential for easement required; pre-rehab point repair likely needed.

Project Location

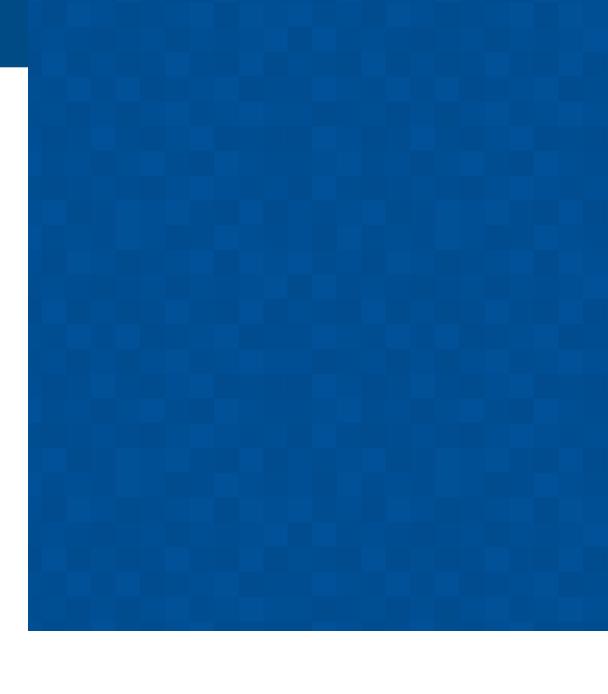
CCTV Representative Image


STORM DRAIN REHABILITATION | HOW TO EVALUATE STORM DRAIN CONDITION?

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

PLAN & PROFILE

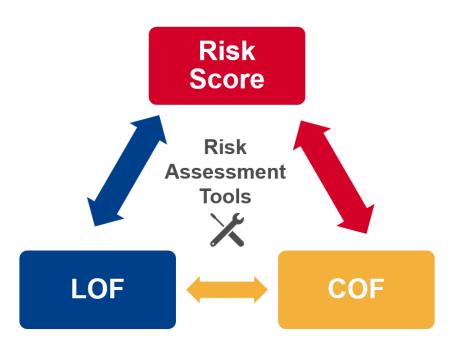
SHEETS


- Plan and profile sheets developed from CCTV data and as-builts
- Map with defects referenced

STORM DRAIN REHABILITATION

HOW TO PRIORITIZE STORM DRAINS?

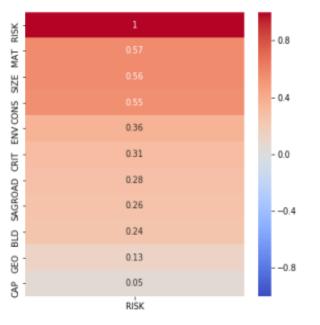
HOW TO PRIORITIZE STORM DRAINS?

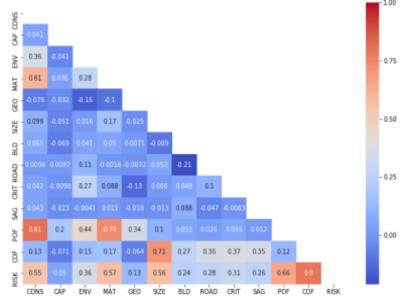

- ■Establish program framework
- Business Risk Exposure to prioritize
 - Condition assessment
 - Corrective action
- Software framework
 - ITPipes
 - Accela
 - ESRI & custom GIS toolboxes
- Risk matrix criteria
- 1. Probability & Consequence of Failure
- 2.Risk of Failure (ROF) = $[LOF \times COF] / 10$
- Refine prioritization

Probability of Failure	Weight (%)
Percent Consumed	30%
Capacity	10%
Operating Environment	20%
Material	20%
Soils	20%
TOTAL	100%

Consequence of Failure	Weight (%)
Size	40%
Buildings	15%
Roads	15%
Critical Service	15%
Sag Inlets	15%
TOTAL	100%

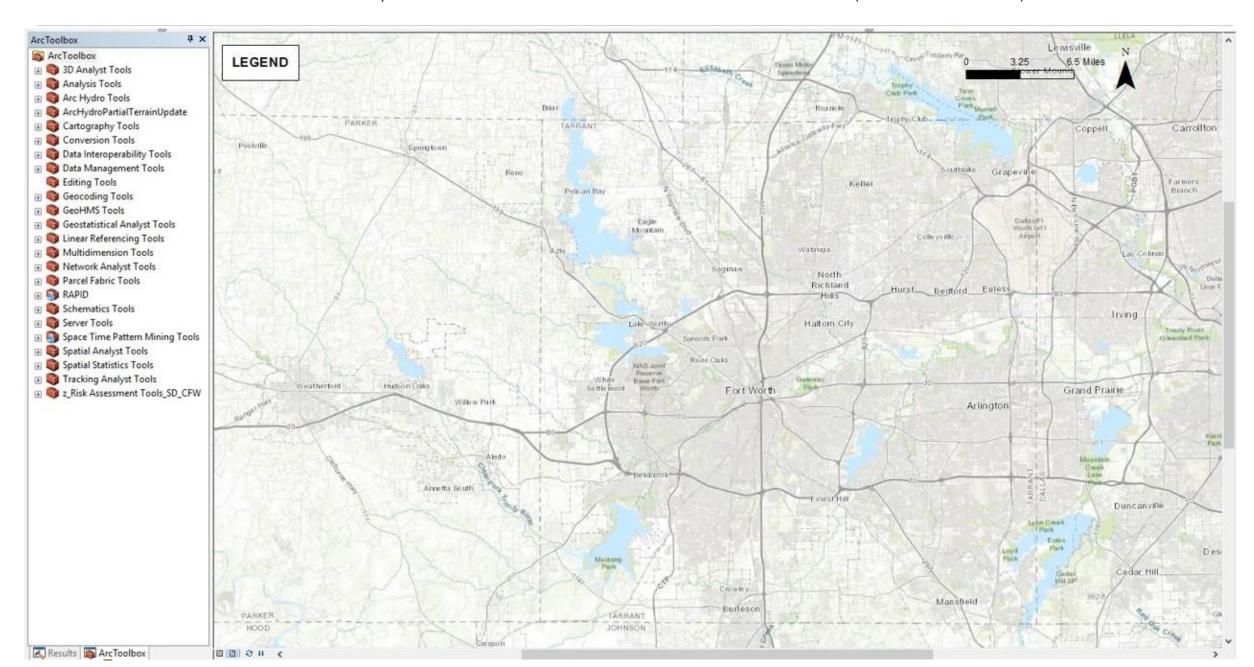
HOW TO PRIORITIZE STORM DRAINS?


- Develop risk prioritization tools in ArcGIS
- ■Perform initial/baseline prioritization
- Refine prioritization approach using field data



CONDITION DATA & PROJECT MODIFIERS

- ■Apply risk criteria
- 1.Baseline prioritization LOF based on surrogate data (no condition)
- 2. Refine prioritization criteria with correlation analysis and field data
- 3.Second prioritization LOF replaced by pipe condition score
- Apply project modifiers with engineering judgement


Correlation Analysis

STORM DRAIN REHABILITATION | HOW TO PRIORITIZE STORM DRAIN PIPES? (GRAPHIC ONLY)

STORM DRAIN REHABILITATION

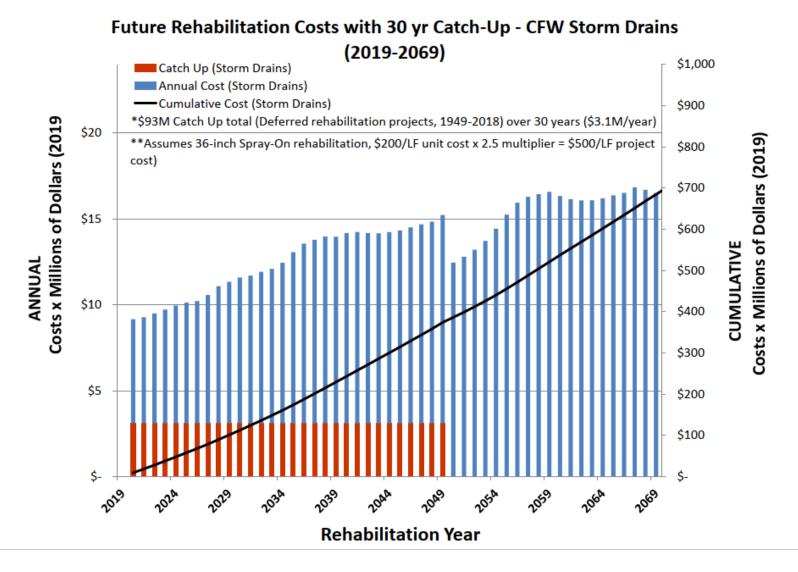
HOW TO IMPLEMENT CORRECTIVE ACTION?

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

NEAR-TERM PRIORITY AND SCHEDULE

■ Condition assessment – BRE-based schedule

Basin	Area_SQMI	Area_Acres	RankBRE	RankInspect	Basin_Rank_Comment	Inspect_YR	HighRisk_LF	Total_LF	HR_Pct	EditDate	Equity	Council District
Α	6.88	4,400	28	1	Prioritized as first Basin - fewer access issues	FY20	3,390	25,857	13	2019-10-14	1	2
В	0.77	492	3	2	Prioritized as an initial Basin - Apr 2020 project	FY20	10,613	36,614	29	2019-10-14	1	2
С	0.97	618	1	3	BRE rank	FY20	17,360	34,534	50	2019-10-14	1	3
D	0.59	379	2	4	BRE rank	FY21	13,118	36,058	36	2019-10-14	1	4
Е	1.2	769	4	5	BRE rank	FY21	8,928	26,875	33	2019-10-14	1	7
F	1.31	839	5	6	BRE rank	FY21	8,881	34,995	25	2019-10-14	1	8
G	6.42	4,109	6	7	BRE rank	FY22	7,736	75,091	10	2019-10-14	1	8
Н	1.24	796	7	8	BRE rank	FY22	7,205	33,254	22	2019-10-14	1	9
I	0.91	580	8	9	BRE rank	FY22	6,706	27,338	25	2019-10-14	1	1
J	0.74	471	9	10	BRE rank	FY22	6,701	20,699	32	2019-10-14	1	2


■ Utility conflict – prioritization table

Pipe ID	Code	Observation Text	Remarks	Score	Utility Location	Percent Intruding	Structural Issue	Separation Recommended	Ranking
SWGM024814	OBI	Obstacle Intruding Thru Wall		8.0	low to middle	60	yes	yes	1
SWGM027068	OBP	Obstacle External Pipe or Cable		7.0	low	10	yes	yes	2
SWGM026667	OBP	Obstacle External Pipe or Cable	EXTERNAL UTILITY PIPE AT MANHOLE	7.0	middle	50	yes	yes	3
SWGM026576	OBP	Obstacle External Pipe or Cable	EXTERNAL UTILITY LINE AT MANHOLE	7.0	middle	50	yes	yes	4
SWGM004045	OBI	Obstacle Intruding Thru Wall	UTILITY BORING LINE	5.3	high	40	yes	yes	5
SWGM000265	MGO	General Observation	LINE INSTALLED THROUGH STORM PIPE	5.3	middle to high	20	yes	yes	6
SWGM018534	OBP	Obstacle External Pipe or Cable	CONDUIT RUNNING THROUGH PIPE	4.7	low	20	no	yes	7
SWGM009259	OBP	Obstacle External Pipe or Cable		4.3	top	10	yes	yes	8
SWGM004047	OBI	Obstacle Intruding Thru Wall	UTILITY PIPE	4.3	high	10	yes	no	9
SWGM022445	OBI	Obstacle Intruding Thru Wall	UTILITY LINE	4.3	low to middle	30	no	yes	10

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

LONG-TERM

BUDGET

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

CORRECTIVE ACTION

- ■Prioritize critical storm drain pipes

 Severity per CCTV x Consequence of failure = "Business Risk Exposure" (BRE)
- ■Select corrective action rehab methods matrix*(trenchless preferred)
- ■Best-value rehabilitation bidder ranking and selection; work order basis
- ■RFP advertised summer 2019; first work orders in FY20

Methods Matrix											
Spray-on	Spray-on	CIPP	Slip-lining	Pipe bursting	Spiral-wound						
(EPOXY)	(CEMENTITIOUS)										
A spray-on or hand	A spray-on lining	An impregnated liner	A new pipe is	New pipe is inserted	Above ground spool						
troweled lining	(cementitous) is	is inserted inside of	inserted inside of	while bursting or	feeds PVC profile to						
(epoxy) is applied to	applied to a cleaned	an existing pipe and	the existing pipe and	splitting the existing	the winding machine,						
a cleaned and dried	and dried existing	cured with water or	grouted for structural	pipe.	which forms the new						
existing pipe crack,	pipe wall.	steam.	support.		pipe by spirally						
joint or wall.					interlocking						

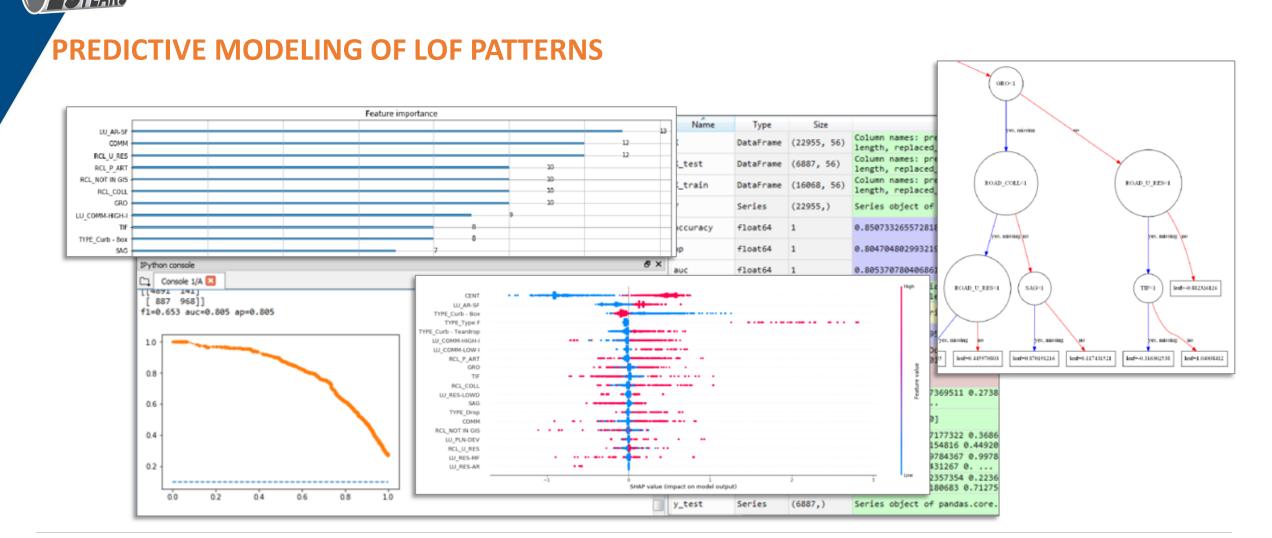
^{*}LA Tech TAG-R, NASSCO, Najafi, et al research text

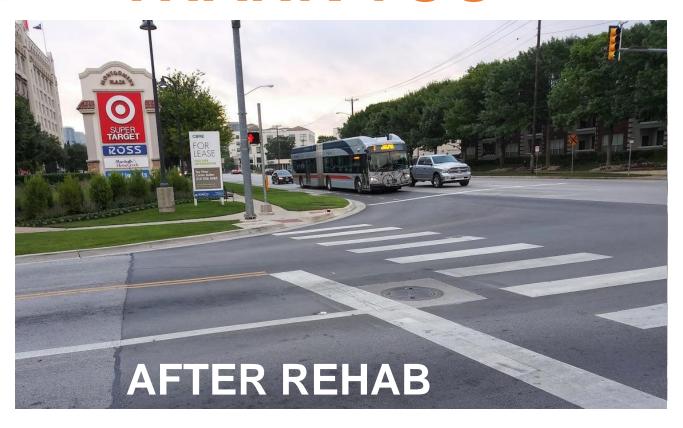
STORM DRAIN REHABILITATION

LESSONS LEARNED

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

LESSONS


LEARNED


LESSONS LEARNED

- ■1. Strategic planning
- ■2. Stakeholder priorities
- ■3. Measure success
- ■4. Get started with what you have!
- ■5. Storms vs sanitary sewers
- ■6. Condition assessment don't need all assets to start
- ■7. Prioritization risk and "constructability"
- ■8. Collect the "right" data today for evaluation tomorrow

Underground Construction Technology | January 28-30, 2020 | Fort Worth, TX

THANK YOU

Contact information:

Michael Owen, PE

Michael.owen@fortworthtexas.gov

Ben Pylant, PE, CFM

bPylant@Halff.com

Preston Dillard, PE

pDillard@Halff.com

Matt Stahl, PE, CFM

mStahl@Halff.com

