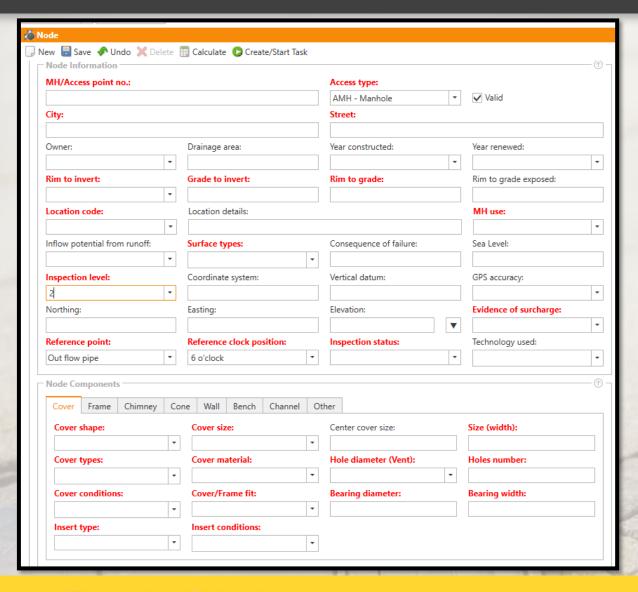
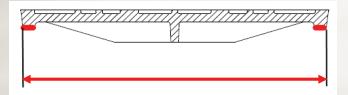
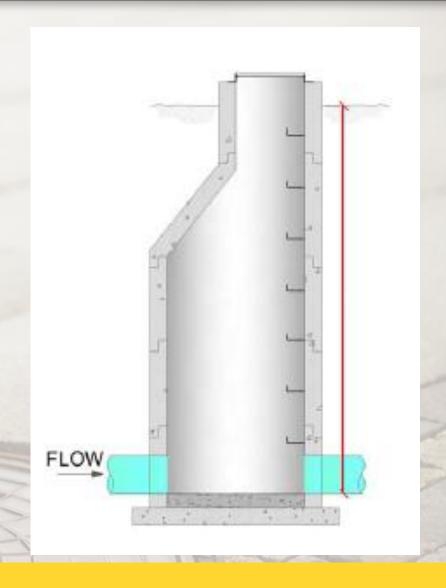

Underground Construction Technology

International Conference & Exhibition


Why Inspect Manholes?

- Locate all manholes, catch basins and outfalls
- Confirm physical characteristics (size, material, etc.) and connectivity
- Identify immediate maintenance needs and structural defects
- Prioritize cleaning and in-line inspection needs
- Build/update GIS with physical and condition asset attributes
- Eliminate surprises (SSOs, pipe failures and operational issues)


NASSCO MACP LEVEL 1


NASSCO MACP LEVEL 2

NASSCO MACP LEVEL 2

Underground Construction Technology

Visual Manhole Inspection

- No special equipment required
- Limited visual observations from ground level
- Possible confined space entry if required
- No video documentation
- Possible photo documentation
- Observations noted on paper forms or database

Handheld Pole Camera

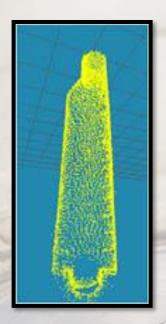
- Battery operated
- Portable, one man operation
- Inspection depth of 25 feet
- Unstable handheld panning/rotation of camera in manhole
- Better suit for screening connecting pipelines
- Inspect approximately 10 manholes per day depending on manhole depth
- Ideal for offroad, difficult to access manholes

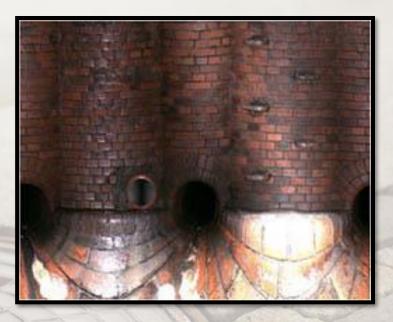
Truck Mounted Motorized Pole Camera

- 30 ft telescopic mast
- Motorized pan/tilt control of inspection video
- Remote controlled from truck office
- Ideal for onroad inspections and connecting pipelines
- No measurements

"Side Scanning" Photographic Camera

- Released 2009; 2015; 2016
- Cable deployed
- Pictures stitched together
- Produces a continuous
 hemispherical picture scan of the
 internal manhole condition
- Manhole is measured using point cloud produced from Lidar





"Side Scanning" Photographic Camera

- Point cloud has limited density
- Depth of manhole inspected relies on reel cable
- Point cloud data and imagery are separate devices
- Data is merged together using proprietary software
- System must be stable and vertical
- Zero calibration necessary (possible human error)
- Limited to point-to-point measurement

Challenges

- Easier off road manhole inspection with minimal equipment transportation
- More forgiving during inspections consistency
- Eliminate zero calibration
- Eliminate costly cable repairs from offroad use
- Quick and stable deployments for manholes deeper than 25 ft
- Rehabilitation quality control

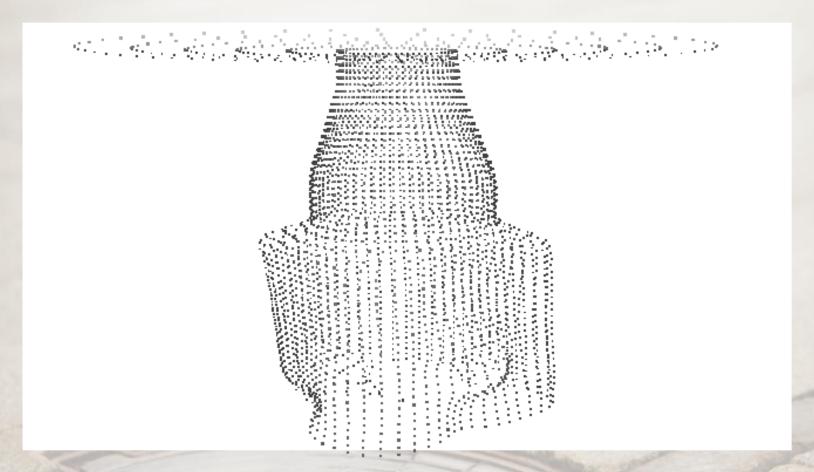
Technology Timeline

Pre-1980 – Visual Inspection

1985 to 2008 – Video Camera / Pole Camera

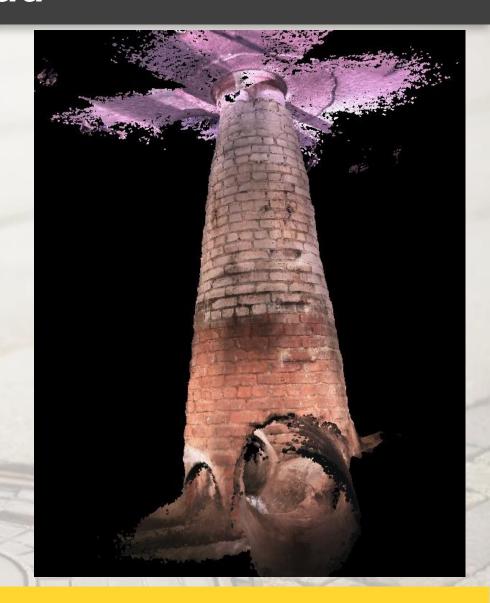
2009 to 2016 – 2D Side Scanning with Measurement

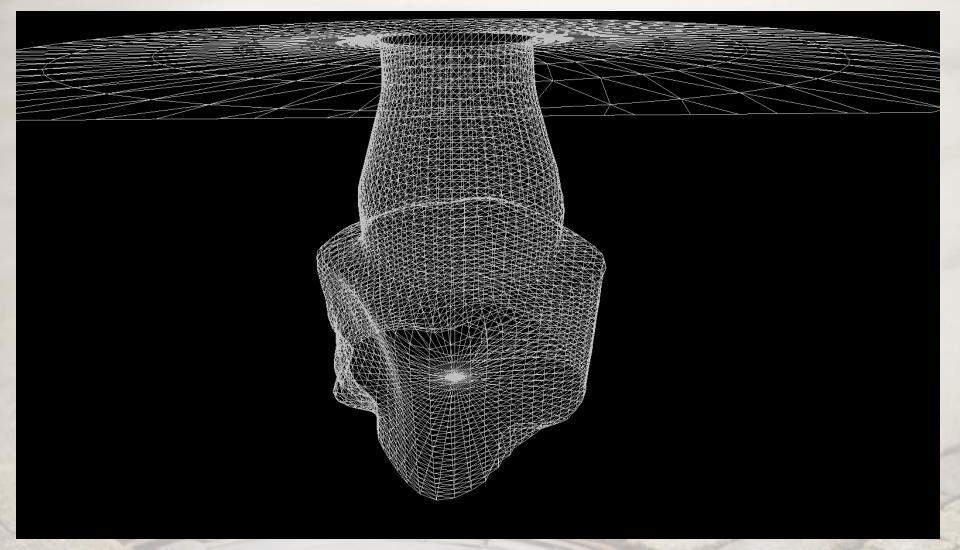
2018 - 3D Scanning / Modeling


3D Wireless Scanning

- Portable Battery Operated
- Wireless, not tethered to power or data
- Tablet control
- High production
- Minimal site time 10 ft/min

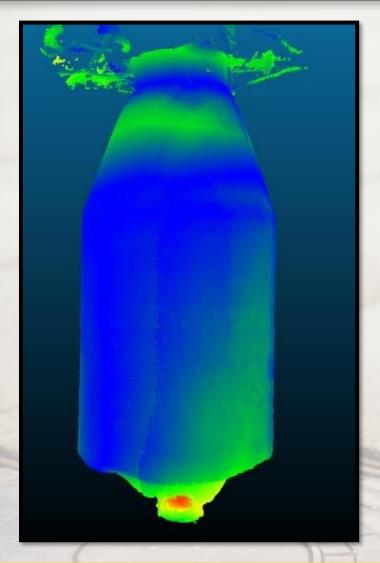
Side Scanning Point Cloud




Sparse and Single Color – Made for point to point measurement

3D Scanner Point Cloud

Color and **Solid** Density
Point Cloud


Increased Density Equates
To Increased Accuracy of
Measurement – up to 1 mm

Solid Density Point Clouds Create Measurable Meshes Instead of point to point measurement

Manhole Rehab Quality Control

Comparison of two meshes provides distance deviation of entire structure using color grading

3D Scanning and Rehab Quality....

Cured in Place Lining

- Meshes can be provided to manufacturers for better fit (reduce material waste and costs)
- Scanning before and after lining will assess if the liner has become detached and if warranty specifications have been met

Coating

- Scan at failure
- Scan after pressure washing
- Scan after coating
- Scan at end of warranty period

Results

Each scan creates a historical mesh to be recorded in the asset and meshes can be compared to determine how much the manhole has changed dimensionally between those periods. These dimensions provide coating thickness and manhole shape deviation in millimeter accuracy.

Surveyed by:	Certificate number:	Owner:	Customer:	Drainage area:	P/O number:	Sheet number:
CUES	U-606-3492	SPiDER Demo				
Access type:	Work order no.:	Start date/time:	Street:		City:	
AMH		20171202 20:18	Easement		Carlsbad, CA	
MH/Access point no.:	Rim to invert: Grade t	o invert: Rim to grad	de: MH use:	Location details:		
Carlsbad SPiDER Demo	16.000 ft. 15.000	ft. 1.000 ft.	SS			
Year constructed Year re	enewed: Media label:	Purpose:	Sewer category: Pre-	-cleaning: Date cl	eaned: Weather:	Location code
Surface types: Inflow Grass Dirt	potential from r Northing	: Ea	sting:	Elevation:	Coordinate system:	GPS accuracy
Inspection status:	Inspection level:	Evidence of surchard	ge: Pressure valu	ie:		

er:	Cover shape:	Cover size: 25.0 in.	Size (width):	Cover material:	Insert type:	Hole diameter (Ven	Holes number:
Cover:	Bearing diameter: 25.0 in.	Bearing width:	Cover/Frame fit:	Cover conditions: Sound	Cover types: Solid	Insert conditions:	
Frame:	Adj. ring type:	Adj. ring material:	Seal inflow:	Adj. ring height:	Frame material: CAS	Bearing width: 1.0 in.	Frame depth:
Fra	Clear opening diam 23.0 in.	Frame conditions: Sound	Seal conditions: Sound	Ring conditions:	Offset distance: 0.0 in.	Bearing depth: 1.0 in.	
Chimney:	First material:	Second material:	Chimney infiltration	Clear opening:	Chimney depth: 5.500 ft.	Lining interior:	Lining exterior:
Cone:	Cone type:	Cone materi	1	ne depth: 00 ft.	Lining interior:	Lining 6	exterior:
Wall:	Wall diameter:	Wall by size:	Wall material:	Wall depth: 15.100 ft.	Lining	interior: Lir	ning exterior:
Bench and Channel:	Bench present: Y Steps number: 0	Bench material: CN Steps material:	Bench lining:	Channel installed:	Channel material: CN	Channel type: F	Channel exposure: F

Connected Asset Information

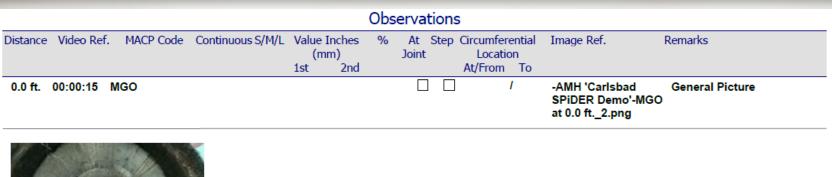
#	Asset	Flow	Clock position	Rim to invert	Material	Pipe shape	Diam 1	Diam 2
1	Sewer Main '003'	Out	6 o'clock	15.833 ft.	PVC	С	8 in.	
2	Sewer Main '004'	In	9 o'clock	15.700 ft.	PVC	С	8 in.	
3	Sewer Main '005'	In	1 o'clock	15.500 ft.	VCP	С	6 in.	
4	Sewer Lateral '001'	In	2 o'clock	7.833 ft.	VCP	С	8 in.	
5	Sewer Main '006'	In	3 o'clock	15.500 ft.	VCP	С	6 in.	

Underground Construction Technology

Manhole Ratings

	Structural:						O&M:					Overall:				
Grade	Amount of	Segment	Manhole	Quick	MH Rating	Amount of	Segment	Manhole	Quick	MH Rating	Manhole	Manhole	LoF	Risk		
	Defects	Grade	Rating	Rating	Index	Defects	Grade	Rating	Rating	Index	Rating	Rating				
1	3	3				8	8	-								
2	12	24]			0	0									
3	3	9	36	332A	2.0	0	0	8	1800	1.0	44	1.7	3.3			
4	0	0]			0	0									
5	0	0				0	0									

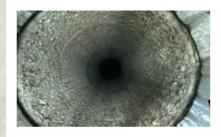
Manhole Component Grades


Grade	Structural	O&M	Grade	Structural	O&M	Grade	Structural	O&M
Hole Number			Adjustment Ring Condition			Frame Seal Inflow		1
Cover/Frame Fit		1	Frame Condition	1		Chimney I/I		
Cover Condition	1		Seal Condition	1	1	Pipe Condition (max. grade)		
Cover Insert Condition			Frame Offset Distance					

Observations

	Observations										
Depth	Video Ref. Component	MACP Code	Continuous	Value Inches (mm) 1st 2nd	%	At Joint		Circumferential R Location At/From To	lating	Image Ref.	Remarks
0.0 ft.	00:00:15 CMI	MGO						1		-AMH 'Carlsbad SPiDER Demo'-MGO at 0.0 ft2.png	General Picture
1.0 ft.	00:00:23 CMI	SAP	S01					12 / 11		-AMH 'Carlsbad SPiDER Demo'-SAP at 1.0 ft1.png	
4.0 ft.	00:00:56 CMI	SAP	F01					12 / 11		-AMH 'Carlsbad SPiDER Demo'-SAP at 4.0 ft1.png	
4.5 ft.	00:01:04 COI	SSS	S02					12 / 12		-AMH 'Carlsbad SPiDER Demo'-SSS at 4.5 ftpng	

Underground Construction Technology



1.0 ft. 00:00:23 SAP S01

□ □ 12 / 11

-AMH 'Carlsbad SPiDER Demo'-SAP at 1.0 ft._1.png

4.0 ft. 00:00:56 SAP

F01

☐ **12 / 11**

-AMH 'Carlsbad SPIDER Demo'-SAP at 4.0 ft._1.png

Conclusion

- New manhole inspection technologies are continuously being introduced in the market to assist with manhole inspections and filling NASSCO MACP fields
- NASSCO compliant software is available to process the manhole inspection data and assist with short and long term prioritization
- Manhole inspections can range from low resolution to high resolution with production anywhere up to 50 manholes per day.

Questions

Kathy Romans
Raven Lining Systems/VersaFlex
romansk@ravenlining.com
832-922-2910

Thank You