CFR Polymer is Perfect Rehab for Ohio Levee System Culvert

Tomas T. Jimenez, P.E.
Business Development Manager
(858) 342-8951
tjimenez@aegion.com

Presentation Outline

Fiber-Reinforced Polymer (FRP)

The Tyfo[®] fiber-reinforced polymer (FRP) system are designed to increase the structural performance of existing PCCP, RC and steel pipes. Fibrwrap[®] Construction, an Aegion company, is the exclusive installer of the Tyfo [®] FRP pipeline repair system for pipelines.

CFRP Rehabilitation Capabilities

Pressure range
Up to 400+ psi
Vacuum pressure
(to 14.7 psi)

<u>Diameter range</u> Medium – Large pipe 30" to 252" (internal)

Glass Fiber Systems

- Glass Fibers
 - Tyfo® SEH-51A
 - Tyfo® WEB
 - Tyfo® BC
- Epoxies
 - Tyfo® S Epoxy
 - Tyfo® SW1S Epoxy
 - Tyfo® S-T Epoxy
 - Thickened Tyfo® S and Tyfo® S-T Epoxies

Tyfo® SEH-51A

Tyfo® SCH Systems – Carbon Fiber Systems

- Carbon Fibers
 - Tyfo® SCH-41
 - Tyfo® SCH-41-2X
 - Tyfo® SCH-Mark V
 - Tyfo® SCH-11UP
 - Tyfo® UC Strips

Tyfo® SCH-41

Tyfo® SCH-Mark V

- Epoxies
 - Tyfo® S Epoxy
 - Tyfo® SW1S Epoxy
 - Tyfo® S-T Epoxy
 - Thickened Tyfo® S and Tyfo® S-T Epoxies

Carbon Fiber Reinforced Polymer (CFRP): Properties are based on the fiber and durability is based on the polymer

Stress-Strain Behavior Illustrates Critical Design Principals

Typical CFRP Design Approach

- Consider degradation level of host pipe
- Stand-alone (fully structural design) versus composite design (with inner core)
- Use Load resistance factor design/AWWA C305 (LRFD)

Circumferential Design

Limit State	Loads	
CFRP Rupture (2)	1-Internal pressure 2-Internal pres. + External Loads	
Buckling	External loads: Groundwater + Vacuum	
Debonding	Empty pipe under	

Longitudinal Design

Limit State	Loads	
CFRP Rupture	Internal pressure (Thrust, Poisson) + Temperature	
Debonding	Internal pressure (Thrust, Poisson) + Temperature	
Buckling	Temperature	

FRP Codes-Reports-Design Guidelines

Code/ Report	Code Title	Date
AWWA C305	CFRP Renewal and Strengthening of PCCP	Dec-18
AWWA C304-04	Prestressed Concrete Pressure Pipe, Steel Cylinder Type	Dec-07
AWWA M11	Steel Water Pipe - A Guide for Design and Installation	Jul-04
ASME PCC-2	Repair of Pressure Equipment and Piping	Apr-11
ASME B31.1	Power Piping (ASME Code for Pressure Piping, B31)	Jun-12

Uses of FRP Rehabilitation Systems

- Structural rehabilitation
 - Segmental repairs
 - Full length repairs
 - Fully structural rehabilitation
 - Single criteria requirement pressure, transient, broken back, joint rehab
- Joint rehabilitation
 - Leak remediation
 - Structural strengthening
- Reinforced coating application
 - Durable coating
 - Nominal strength

FRP Installation Method STEP 1: SURFACE PREPARATION

Sand Blasting Equipment

Finished Surface - Concrete

FRP Installation Method STEP 2: PRIMER / SATURATION

Surface Primer

Material Transport

CFRP Impregnation

Installation Method STEP 3: FRP SYSTEM INSTALLATION

Circumferential layer

Circumferential layer

QA/QC Process

- Continuous Inspection conducted by Quality Control Specialist (QCS)
- Selected QA/QC steps documented
 - CFRP material manufactured by an ISO 9001:2015 certified company
 - Verify installation is in accordance with drawings and specifications
 - Condition of host pipe
 - Control of air flow, temperature, and humidity
 - Surface preparation
 - Adhesion tests
 - Material saturation
 - Application (details, timing)
 - Termination details
 - Preparation of witness panels
 - Post-installation inspection
 - Curing (85% cure before service)

In-Situ Quality Control Testing ASTM D4541 – Adhesion Testing

- •Minimum (3) 2 ft x 2 ft panels on adjacent non-repair pipes
- •Prepared and tested by Installer (ASTM D4541)
- Witnessed by Inspector
- •>200 psi required for at least 3 tests per panel
- •Failure mode may affect design approach!

Testing of Witness Panels after Construction

- Prepared by the Installer, witnessed by the Inspector, tested by the Independent Testing Agency
- Three panels or one panel per day per work shift, whichever is greater
- One layer of CFRP
- Preparation of panels spread throughout construction

Case Study – Zoar Levee Unique Project Requirements

- 36" reinforced concrete box culvert rehabilitation
- Operated by US Army Corps of Engineers
- The box culvert structure is critical for dam safety
- Box culver joints were cracked and damaged due to service conditions
- The FRP composite wrap was designed to prevent soil erosion behind the culvert and to maintain dam integrity
- The FRP wrap was used in conjunction with concrete repairs
- The FRP wrap supported watertight requirements and nominal strength requirements

Case Study – Zoar Levee Ventilation and Dehumidification

Case Study – Zoar Levee Unique Project Requirements

- Background and E-verify checks
- USACE safety practices
- Confined space entry plan and rescue team
- Cleaning and jetting of culvert
- Pre and Post CCTV
- Ventilation
- Surface preparation
- Inspection and QC testing (ASTM D3039 and D4541)
- Materials contain 0% VOC
- 22 joints repaired

Case Study – Zoar Levee Unique Project Challenges

- Small site setup footprint
- No truck access was allowed on the levee walls and hence a CIPP crew was not allowed to enter the site
- Hydraulic capacity requirement prevented the loss of cross sectional area
- CIPP liners would reduce the culvert hydraulic capacity
- The USACE required a repair method to prevent sink holes at the dam structure

Case Study – Zoar Levee Concrete Repairs

Case Study – Zoar Levee Installed FRP Composite System

Case Study – Zoar Levee FRP Material Inspection

Conclusions

- Unique box culvert structure was successfully rehabilitated with FRP materials
- Joint rehabilitation or spot repairs for pipes or box culverts can be cost effectively rehabilitated with FRP materials
- The concrete repairs and FRP materials effectively provide the leak prevention and nominal strengthening required by project
- The project team was able to support all required safety, quality control, logistics and structural criteria
- The project team delivered the project on time and on budget

Thank you!

Tomas T. Jimenez, P.E.
Business Development Manager
Cell. 858-342-8951
tjimenez@aegion.com

