Rotary Bit Cutting Structures, an Explanation with Teeth

Bruce Beatty UCT 2019 Fort Worth, Texas

January 29, 2019

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Mechanics of material removal

- For a cutting tool to perform work properly it must do 3 things
 - Penetrate the material
 - Create cuttings from the material
 - Evacuate the cuttings
- The cutting tool feature that performs these 3 tasks is called the Cutting Structure

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Cutting Structure Geometry

- Penetrate the material: Point Contact
- Create cuttings from the material: Tooth Shape
- Remove the cuttings: Gullet, Flute, Bit clearance
- Tool body clearance: Set, Margin or Gage Clearance

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Mechanics of material removal

- The Base material, quantity, spacing, shape, length, rake angle and gullet of a tools tooth dictate How and Where a tool is to be used
 - Material best suited for the tool
 - Penetration Rate, Feed pressure or Weight on Bit

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Linear Cutting Structure - Sawing

- Defined by TPI or Teeth Per Inch
 - Softer material Longer teeth and fewer number of teeth
 - Harder material Shorter teeth and higher number of teeth

3 TPI	6 TPI	8 TPI	10 TPI	10/14 TPI	14 TPI	18 TPI	24 TPI	GRIT
ROUGH CUT QUAL					2			— SMOOTH
FAST CUT SPEED								SLOW
	Wo	od						
			Th	ick Metal 1-8" -	1/2"			
					Medium Meta	1 3/32" - 5/16"		

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Rotary Bit Cutting Structure

- Defined by an IADC Code
 - Softer material Longer teeth and fewer number of teeth
 - Higher RPM's Lower Weight on Bit
 - Harder material Shorter teeth and higher number of teeth
 - Lower RPM's Higher Weight on Bit

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Rotary Bit Cutting Structure Shapes

- Milled Tooth (Aka: Tooth Bit, Steel Tooth Bit or Soft Bit)
 - Shape is milled out of the Bit Cone or as a Casting
 - Hardened tooth with Tungsten Carbide overlay
 - Gage row teeth will have different shapes for wear resistance to help maintain bore diameter.

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Rotary Bit Cutting Structure Shapes

- Tungsten Carbide (Aka: TCI Bit, Button Bit or Hard Bit)
 - Tungsten Carbide Inserts
 - Pressed into the bit cone
 - Soft Formations

Chisel

Conical

Hard Formations

Round Top

Wedge Crested

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Rotary Bit selection for optimal performance

- What are your ground conditions
 - Ground hardness or UCS
 - Select cutting structure based on IADC
 - Recommended Weight on Bit (WOB)
 - Recommended RPM
 - Broken Ground
 - Using a harder bit than recommended helps the cutting structure hold up better

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Rotary Bit selection for optimal performance

- Do you know your actual downhole WOB (feed pressure)?
- What impacts downhole WOB?
 - Drill rig efficiency
 - Drill string friction
 - Bore length
 - Clay content
 - Drill string coiling or snaking
 - Worn or undersized drill string
 - Long bore lengths
- How do you overcome these inefficiencies to get to the recommended WOB?
 - Increase WOB if possible (see above)
 - Decrease number of cutter <u>contact points</u> by going to a softer bit

Underground Construction Technology | Jan. 29-31, 2019 | Fort Worth, TX

Summary

- The mechanical removal of material in Rotary Drilling requires 3 things
 - Penetration of the material
 - Creation of cuttings
 - Removal of cuttings
- The number of teeth or points of contact of a tool dictates
 - Material that the cutter can be used in
 - Optimal feed pressure "Weight on Bit"
 - Optimal RPM
- Increase WOB by increasing feed pressure or decreasing number of <u>contact points</u>
- Formation changes in a bore will require adjustments in WOB and or RPM to maintain optimal performance in Bit life and Rate of Penetration.
- Using the lowest RPM as feasible helps prolong bearing life.

Bruce Beatty bruce.beatty@Epiroc.com (303) 513-1231