Underground Construction Technology International Conference & Exhibition

January 29-31, 2019 Fort Worth Convention Center, Fort Worth, TX

HR

Selection of Water Main Materials

Dan Ellison, PE Senior Professional Associate January 29, 2019

A Monster Lurks Around the Bend!

Graphic: AWWA – Buried No Longer

Polyvinyl Chloride (PVC) Pipe

- » Used for 60% of new water mains in the U.S.
- » 30+ years of good data
- » Does not corrode, but does weaken with age
- » Low failure rates, but brittle
- » Failures can be significant events

High-Density Polyethylene (HDPE) Pipe

- » Used for most new gas mains in the U.S.
- » Choice for water mains in U.K. and elsewhere
- » 40+ years of data
- » Does not corrode
- » Very ductile
- » Very Low failure rates
- » Fused joints

Ductile Iron Pipe

- » Modern version of cast-iron pipe
 - Ductility
 - Corrosion Protection
- » Lots of data
 - · Historic cast iron data
 - Trade association tests
- » Very strong! Typically much stronger than required for internal water pressure
- » Low failure rates

Steel CML/CMC Pipe

- » Used for special applications and large diameter pipes
- » Welded joints resist ground movement and fully seal the pipe
- » Coating & lining plus cathodic protection
- » Lots of data
 - Historic cast iron data
 - Field tests
- » Low failure rates when well protected
- » Generally costly for small diameters

Cost Factors for Existing Streets

	Ductile Iron	PVC			
Material Cost (6-inch)	\$12/ft	\$6/ft			
Trenching	no differe	nce			
Paving	no difference				
Permitting and traffic control	no difference				
Installation / handling	more rugged, but polywrap required	lighter easier to cut			
Thrust restraint	field-lock gaskets	concrete thrust blocks			
Service lateral installation	can be directly tapped	saddle needed & special drill bit			
Backfill (slurry)	no difference				
TOTAL INSTALLED COST	\$250/ft	\$225/ft			

Break rates for modern materials are low...HDPE is lowest

UK Breaks/100 miles/year	1998	1999	2000	2001	Averages
Asbestes Cement	26.4	27.5	24.3	25.4	25.0
Ductile Iron	8.0	8.5	7.7	7.7	8.0
Cast from	36.1	36.1	30.7	34.9	35.5
Polyethylene (HDPE and MDPE)	5.6	4.7	5.3	5.0	5.1
PVC	15.4	14.6	11.6	11.9	13.4
Steel	8.0	9.8	9.3	9.2	9.1
Unknown	0.2	0.0	0.0	0.2	0.1
Source: MacKellar and Pearson, 2003					

Comparisons of Break Rates can be misleading

» These pipes have different average ages, different average sizes....

Source: Steven Folkman, Utah State Univ., 2018

Survey of 281 Utilities, serving 27 million people

"Breaks" are failures of the pipe barrel

Spiral crack

Blowout

What is the life expectancy of a pipe?

- » Unlike a person, the death of a pipe is not a definitive event
- » Unlike a person, a pipe is not a definitive thing
- » A pipe lasts until someone decides to replace it
 » Decisions may be rational, objective, based on data
 ...or not
- Good Reasons to Replace a Pipe:
- 1. Repairs get too costly
- 2. Service is substandard
- 3. Infrastructure stewardship

AGE IS A POOR PREDICTOR OF PIPE CONDITION

- » Yes, pipe failures increase with age
- » No, pipe lives are not found in a book...

Life Expectancies Depend on Economics and Levels of Service

Life expectancies are highly localized and highly variable – and MAY SURPRISE YOU

Pipe Type / Location		Mean Life Expectancies		
AC Pipe – Anchorage	(0)	125 to 170 years		
Old Cast Iron – Anchorage	alyses	75 to 150 years		
Cast Iron – Eugene	I An	130 to 200 years		
Cast Iron – Portland		> 200 years		
All pipes – Boulder		150 to 200 years		
Most pipes – Seattle	sed on 3	>200 years		
Old AC – SF Bay Area		90 to 100 years		
Newer AC – SF Bay Area	Ba	175 to 185 years		
Cast Iron – Western US	60 to 100 years*			

* Per "Buried No Longer"

Iron Pipe Aging and Failures

FX

Pipe Material	Aging Processes	Failure Methods
Ductile iron	 Internal corrosion External corrosion General Pitting 	 Rust holes or other leaks Bursts (longitudinal) Breaks (circumfrential) Joint and service tap leaks

Pitting Corrosion

General Corrosion

Corrosion of Iron or Steel is NOT Linear

Exposure time, τ (years)

Source: Water Research Fdtn

Corrosion of Iron or Steel is NOT Linear

Exposure time, τ (years)

Source: Water Research Fdtn

New Pipes Should be Designed to Last 100 Years or More

CLASSIC METALLIC PIPE BREAK CURVE

H

PVC Aging and Failures

Pipe Material	Aging Processes	Failure Methods
Polyvinyl Chloride	Slow crack growthLong-term creepMaterial degradation	 Brittle fractures Ductile burst (very rare) Joint and service tap leaks

Contractor damage

Slow Crack Growth & Rapid Propagation

Predicted Failure Rates - PVC

» PVC failure rates tends to level off

Predicted Failure Rates - PVC

» PVC failure rates tends to level off

Source: Water Research Fdtn

Failure analysis

- **Design replication »**
- Laboratory testing **»**
- » Operational data

Photo 7: All 3 of the Sample #3 ring specimens from the flattening test failed prior to reaching the required 40% deflection.

Flattening Tests

The acetone test reveals very poorly fused material...it is no longer used in international standards

Photo 9: The acetone immersion sample shows inadequate fusion mid-wall. The combination of inadequate fusion and the presence of foreign material that will initiate cracking was the cause of the failure.

Acetone Emersion

Infant Mortality Example - Over-Stabbing and Deflecting of Joints

Figure 2a, b: An Over-Belled Joint; Excessive Axial Offset

Figure 7a, b: Over Assembled Joint; Axially Offset Joint

Infant Mortality Example - Over-Stabbing and Deflecting of Joints

HDPE Aging and Failures

Pipe Material	Aging Processes	Failure Methods
HDPE	 Slow crack growth Long-term creep Material degradation 	 Brittle fractures (rare) Ductile burst (very rare) Joint and service tap leaks Contractor damage Bad welds

Premature aging can also occur with high temperatures, high chlorine, and inadequate stabilizers

Most failures are attributed to weld problems or third-party damage

Comparison of Stage II (slow crack growth) failure rates

Source: Water Research Fdtn

New Pipes Should be Designed to Last 100 Years or More

New Pipes Should be Designed to Last 100 Years or More

New Pipes Should be Designed to Last 100 Years or More

How long will AC pipes last?

Different "Asset Classes" Exhibited Different Performance

Life expectancy depends on pipe type, shrink/swell, pressure

	Asset Classes	Median Life Expectancy	Portion of EBMUD System
1	Type I or Type II with High SS, High or Moderate Pressure	98 years 🗲	27%
2	Type II with High SS, Low Pressure	90 years	12%
3	Type II with Low SS, High or Moderate Pressure	166 years	29%
4	Type II with Low SS, Low Pressure	255 years	32%

Weibull Modeling Results

Failure = 3 breaks in 500 feet or less, or 4 Breaks in > 500 feet

Earthquake Hazards Affecting Pipe

- » Shaking
 - Wave propagation acting straining the pipe
 - Surge/transients
- » Permanent Ground Deformation (PGD)
 - Fault movement
 - Liquefaction
 - Lateral spread
 - Landslide
 - Differential settlement

Pipe Characteristics Affecting Seismic Performance

- » Ruggedness material strength or ductility to resist shear and compression failures.
- » Bending beam strength or material ductility to resist barrel bending failures.
- » Joint flexibility joint and gasket design to allow elongation, compression, and rotation.
- » Joint restraint a system that keeps joints from separating.

Pipe Failure Rates - Kobe, Japan, 1995

- » DIP (unrestrained joint) failed from joint pull-out
- » PVC pipe suffered barrel, fitting, and joint failures in addition to joint pull-out

	Failure Rates/km - Number of Failures									
Failure Mode	DIP		CIP		PVC		Steel		AC	
PipeLength (km)	1874		405		232		30		24	
Barrel	0	9	0.63	257	0.38	88	0.33	10	1.24	30
Fitting	0	1	0.31	124	0.17	40	0.03	1	0.04	1
Pulled Joint	0.47	880	0.49	199	0.33	76	0	0	0.37	9
Joint Failure	0	2	0.06	25	0.50	115	0.07	2	0.08	2
Joint Intrusion	0	5	0	1	0.01	3	0	0	0	0

Emerging Opportunities

Japanese Seismic Joint for DI Pipe

QUESTIONS?

Dan Ellison, PE Senior Professional Associate

Dan.Ellison@HDRinc.com

