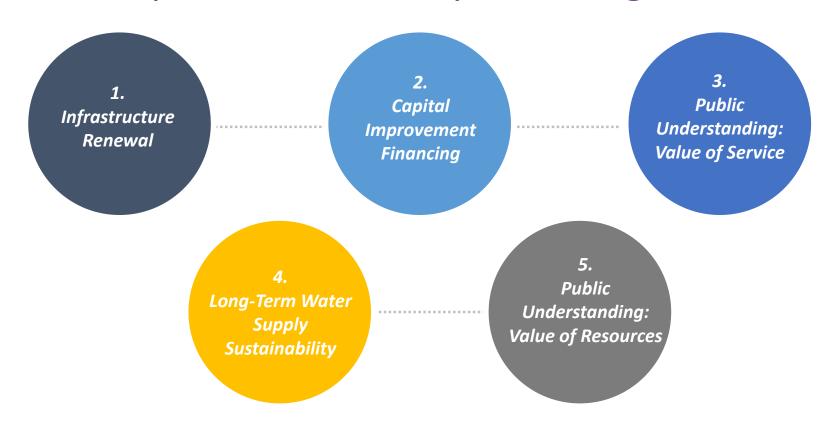
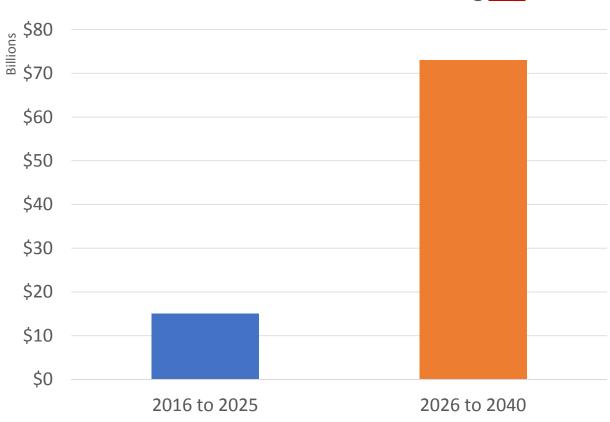
Linear Asset Management


Jennifer Steffens, P.E.
Pure Technologies

Utility Goals

- Reduce Failures
- Optimization of Capital Spend

Top Water Industry Challenges



International Conference & Exhibition

1. Infrastructure Renewal

2. Capital Improvement Financing

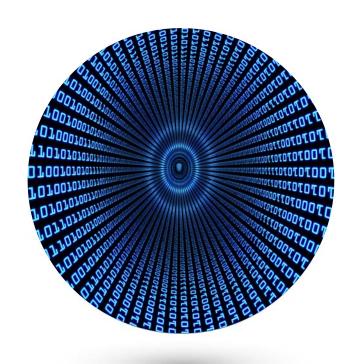
Water & Wastewater Infrastructure Funding Gap

Why Not Just Replace?

1. Desktop risk evaluations naturally conservative

2. High risk often driven lack of or poor data quality

3. Risk analysis should drive condition assessment, not renewal


A Better Way...

Move beyond age and failure focus

 Age rarely correlates with condition (Water Research Foundation)

70% to 90% of replaced pipelines have remaining life (US EPA)

Best-in-class renewal programs renew 1% of system per year

How to Get There?

Use Risk Assessments to drive condition data collection

Use advanced analytics to produce high value information

Update Risk with real-time data and analytics to empower precise decision making through tools and reporting

Risk

Probability of Failure

Consequence of Failure

Potential to gain or losing something of value

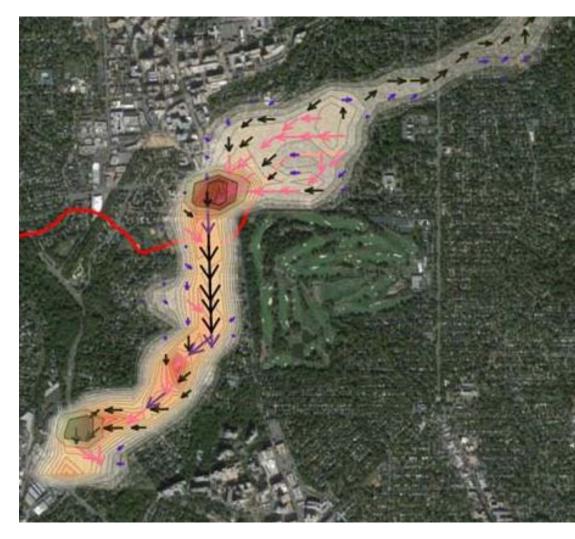
PoF – What is the likelihood a pipe will fail in a given time period?

Pipe Condition

- Material quality
- Manufacturing
- Design
- Environmental
- Operational
- 3rd party damage
- Installation
- Age

CoF – What is the Impact of Pipe Failures?

Social


- Loss of trust
- Traffic disruption

Environmental

- Creeks and rivers
- Sensitive areas

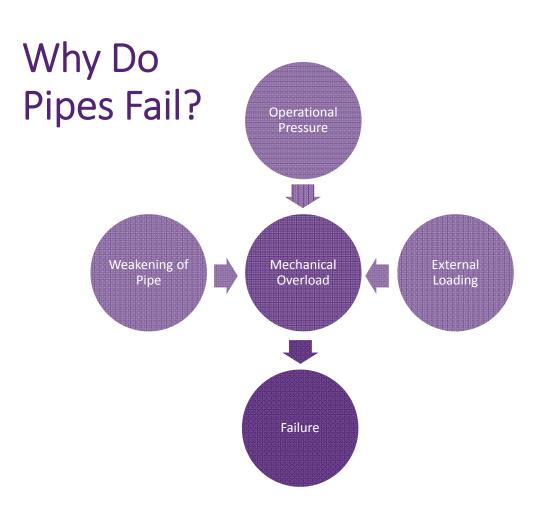
Economic

- Repairs
- Damage
- Loss of product

Using Risk as a Guide

Risk Rank	Risk Score	Mile	Pipeline Name		
1	11.1	5.3	Montebello/Herring Run		
2	11.0	2.6	Fullerton		
3	10.3	8.1	Moravia East		
4	10.3	10.5	Moravia South		
5	10.2	8.3	Mays Chapel to Towson		
6	10.0	3.9	Leakin Park Route		
7	9.9	3.0	Towson East		
8	9.7	6.5	Ashburton		
9	9.6	8.6	Pikesville North		
10	9.6	5.9	Howard		
11	8.4	7.2	Short Sections		
12	8.3	11.4	Pikesville South		
13	7.8	2.9	North Point Blvd		

International Conference & Exhibition



International Conference & Exhibition

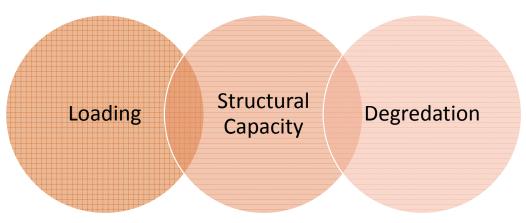
International Conference & Exhibition

Cast Iron Pipes

- Cracking from joints (leadite)
- Longitudinal or circumferential cracking
- Graphitization, corrosion and pitting

Ductile Iron Pipe

- Broad areas of corrosion
- Internal or external


Steel Pipes

- Corrosion pitting
- Leaking
- Buckling

No **single** technology or technique can identify **all** of the indicators of pipe deterioration.

Therefore, a holistic, risk based approach should be used.

Probability of Failure

Underground Construction Technology International Conference & Exhibition

TECHNOLOGY		Pressure Pipe Assessment								TEST	TEST CONDITIONS	
Name	<u> </u>	Technology Matrix								Parameter Tested		
Acoustic/Leak Detection Tools						6 7	Midt	IIA				
Acoustic Leak Detection (tethered)	Pure Sahara	10" and Up					Tap available			Leak detection, air pockets	Hot inserted and retrieved throair pockets	
Acoustics Leak Detection (surface mount)	Echologics RTLeakListener	All Sizes						pothole for accelerometers		Leak detection only	Install accelerometers on exp not validated yet on force mai	
Free Swimming Acoustic Leak Detection	PURE SmartBall	8" and up								Leak detection, air pockets	Hot inserted and retrieved thro bonnets and retrieved at manh for air pockets	
	PURE Soundprint AFO	All Sizes					Out of service during installation			Now - software only for PCCP wire breaks Future - Leak detection, air pockets	Permanent installation	
Acoustically Sensitive Fiber Optic	Echologics LeakMonitor	All Sizes					around valves, fittings			Leak detection	Expected to be effective	
Wall Thickness/Condition Tools												
	Echologics	All Sizes			(AC)			Need to		Remaining wall thickness in DI, CI and ST	Echologics recently tested in	
Acoustic Wall Thickness	Pure Sahara with PWA	10" and up						Need to pothole for		Average Remaining wall thickness	Beach in 2010. Both require accelerometers. Initial results	
Broadband Electromagnetic (Internal Pig)	Rock Solid Group allied	A II O:								Remaining wall thickness in Cl and Dl and ST	Pipe must be drained, expose	
Broadband Electromagnetic (External HSK)	with several testing firms in US	All Sizes									Pipe exterior must be expose	
Magnetic Flux Leakage (External scanner)	AESL	All Sizes								Wall Thickness testing/profiling	Pipe exterior must be expose	
Remote Field Eddy Current/MFL	PICA	4" to 24" (to 36" in future)					If inserted thru pig launcher	If inserted thru pipe opening	If pulled thru on a tether	Internal test for metal wall loss, corrosion in DI, CI and ST	Pipe must be drained, expose	
Ultrasonic (External)	NDT Corp, MacTec, others				(AC?)					External test for wall thickness	Local only along pipe wall. Ne calibrated to material.	
Ultrasonic (Internal)	NDT Corp, Rosen, other	All Sizes								Internal test for wall thickness	Developed in Germany for Ste pilot in NYCDEP not success	
Magnetic Tomography	Transkor-K	All Sizes								External test of wall thickness and active corrosion	Used from the surface	
Prestressing Wire Condition Assessmen	t Tools											
Remote Field Eddy Current / Transformer Co		Varies by tool					Pipe Diver	Pipe Crawler	Crawler, Walker	Internal test for wire breaks in PCCP	Can hot insert from 24 to 36". and opened	
Other/Ancillary CA Program Components												
Closed Interval Potential Survey	PPT	All Sizes								External test of pipe coating failure (soil corrosion)	Requires pipe to be electrical	
Soil & GW Corrosion Testing	Many Firms/Local Labs	All Sizes								Take soil & groundwater samples for lab analysis	Indicator only of soil corrosion constantly so data is of only r	
Pipe Coupons or Sampling	Many Firms/Local Labs	All Sizes								Take coupons or pipe samples for analysis	Take samples from pipe to co strength, flexural strength, mi- universal indicator for AC	

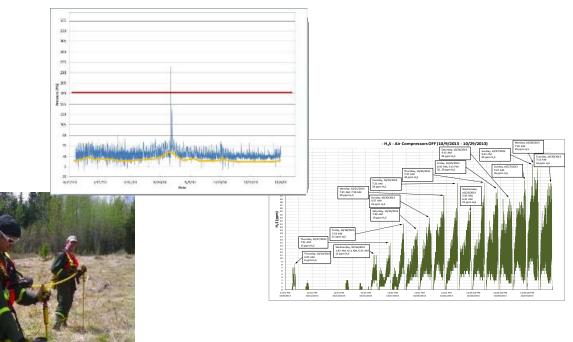
International Conference & Exhibition

Multi-Pipe Level

Corrosion Surveys
Gas Pocket Detection
Pressure Monitoring

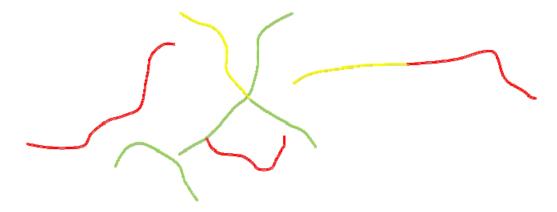
Pipe Level

Pipe Wall Assessment Pulsed Eddy Current


Pit Level

Electromagnetics
MFL
UT and BEM

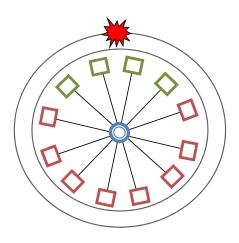
Multi-Pipe Level Technologies


Technologies

- Leak Detection
- Gas Pocket Detection
- Acoustic Pipe Wall Assessment
- Pipe Penetrating Radar
- Soil Corrosivity
- H₂S Monitoring
- Pressure Monitoring

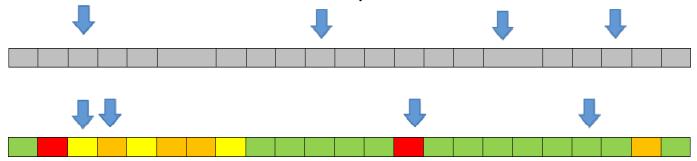
From Multi-Pipe Level to Pipe Level

Screen and prioritize pipes in a network


Apply higher resolution technologies in a cost effective manner

Pipe Level Technologies

Technologies


- Pulsed Eddy Current
- CCTV
- SONAR/Laser

From Pipe Level to Pit Level

• Pipeline condition assessment with test pits

From Pipe Level to Pit Level

Pit Level Technologies

Technologies

- Electromagnetics
 - Inline
 - Test Pit
- BEM or UT
 - Test Pit
- MFL
 - Inline
 - Test Pit

International Conference & Exhibition

International Conference & Exhibition

Condition Assessment Pilot (PCA) Results

Costs of Recommended Action							
Re-Inspection	\$1.1M						
Cathodic Protection	\$0.93M						
Rehab & Replacement	\$2.8M						
Sub-Total	\$4.8M						
PCA Pilot	\$0.99M						
TOTAL PILOT COST	\$5.8M						

Full Pilot Area Replacement Cost ~\$12.0M

International Conference & Exhibition

Renewal Pilot

- Evaluation of 6 rehabilitation technologies
 - CIPP
 - Pipe Bursting
 - Close-Fit Sliplining
 - Spray-On Lining
 - CFRP Lining
 - Internal Sleeves

Repair vs. Replace

Less than 10% of pipelines surveyed have indicators of distress,

while even fewer require repair or replacement to extend their useful life

10%

The cost of condition assessment can be less than 8%

of the cost of full-scale replacement programs

8%

Questions?

Jennifer Steffens, P.E. Jennifer.steffens@puretechltd.com

443-827-1916