

THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition

From Planning to Recycling: Avoiding Underground Pitfalls in Hard Rock Environments

Jeff Davis, Product Manager, HDD tooling Seth Matthesen, Senior Product Manager, HDD

Agenda

- Preplanning for drilling
- Potential pitfalls to avoid
- Downhole tools for diverse ground conditions
 - Single-pipe downhole tools (DHT)
 - Dual-pipe downhole tools
- Importance of mud recycling
- Case studies
- Summary/Conclusion
- Questions

Preplanning

- Preparing for HDD jobsites, step one: test ground conditions
 - Common pitfalls when meeting unfamiliar terrain
 - Project delays
 - Increased costs
 - Decreased profits
 - Incorrect drilling method selection and improper bit selection for formation
 - Lack of preparation and operator frustration
- Testing will help operators correctly match tooling to ground conditions leading to:
 - Increased productivity
 - Reduced premature wear, increased tool longevity

Drilling Technology Effectiveness

Downhole Tools for Diverse Ground Conditions

Single-pipe DHT

- Conventional carbide tipped spade bits
 - Corse soils, dirt and gravel
- Replaceable insert carbide tooth bits
 - Rocky, cobble soils
- Single roller cone TCI rock bits
 - Layered rock
 - Solid rock
- Air hammer with TCI bits
 - Layered rock
 - Solid rock
- Mud motors with rotary bits and drag bits
 - Layered
 - Solid rock

Dual-pipe DHT

- Mechanical motors with TCI bits
 - Cobble rock
 - Solid rock
- Mechanical motors with air hammer systems
 - Mixed soils, sandy loam
 - Solid rock

Downhole Tools for Diverse Ground Conditions

Single-pipe downhole tools

Dual-pipe downhole tools

Potential Pitfalls

- Three important factors in rock drilling
 - RPM (rotation per minute)
 - Key factors for RPM in rotary bits are life of seals and bearings, and carbide cutting structure
 - WOB (weight on bit)
 - Very important when drilling in rock
 - Life factors of tooling
 - Drilling Fluids
 - One of the most important factors in rock drilling, mud is your friend – you must be able to move cutting out of the borehole to complete your job!

Single-pipe Downhole Tooling

- Conventional carbide tipped bits
 - Effective in most soil conditions, but primarily recommend for use in soft rock (sandstone, shale) and light cobblestone

Single-pipe Downhole Tooling

- Replaceable insert carbide tooth bits
 - Effective for use in light rock and cobblestone

Single-pipe Rock Tooling

- Single roller cone rock bits
 - Effective for use in layered rock and solid rock

Single-pipe Rock Tooling

- Air hammer with TCI bits
 - Effective for use in layered rock and solid rock

Single-pipe Rock Tooling

- Mud motors with rotary bits and drag bits
 - Effective for use in cobble, layered and solid rock

Dual-pipe Rock Tooling

- Mechanical motors with rotary bits and drag bits
 - Effective for use in cobble, layered or solid rock
 - Mechanical bit drive (inner rod)
 - Low drill fluid requirement (+/- 30 lpm)
 - Outer body rotation locked for steering
 - Outer body rotating to go straight

Dual-pipe Rock Tooling

- Dual-pipe mechanical motor with air hammer system
 - Effective for us in solid rock

Drilling Technology Effectiveness

Backreaming in Diverse Ground Conditions

- Solid rock formations
 - Important factors:
 - RPM: low
 - WOB: manufacturers spec
 - Fluid flow: determined by size

Backreaming in Diverse Ground Conditions

- Cobble and chunk rock formations
 - Important factors:
 - RPM: midrange speed
 - WOB: manufacturers specs
 - Fluid flow: generally determined by size

Backreaming in Diverse Ground Conditions

- PDC bit reamers
 - Solid formations:
 - RPM: high
 - WOB: manufacturer's spec
 - Fluid flow: determined by size

Recycling HDD Fluids

Drilling Fluids

- Drilling fluids are essential in any HDD installation
- Disposing of used fluid can be time consuming and costly
- Recycling drilling fluids can:
 - Reduce the overall volume of fluid on a jobsite
 - Reduce fluid disposal costs
 - Conserve water
 - Improve drilling productivity
 - Impacts carbon footprint
 - Limits disturbance to the environment

Limitations

- May not be effective for all soil conditions
 - Clay-based soil
 - Fractured zones
- Change in methodology
 - More means less
- Training effort

Fluid Recycling: Savings

	3,000 gallons		1,000 gallons
	Cost Per Day		Cost Per Day
Mixing system	\$134.76	Micro recycling system	\$277.63
Water	\$15.00	Water	\$5.00
Fuel used on vac/truck for mud recovery	\$84.50		
Drilling additive cost for the day	\$99.00	Drilling additive cost for the day	\$33.00
Fuel used on mixing system	\$50.00	Fuel used on micro recycling system	\$66.60
Cost of dumping mud (determined from volume pumped/day)	\$249.75	Cost of dumping mud (determined from volume pumped/day)	\$64.80
Fuel used hauling mud off	\$133.20	Fuel used hauling mud off	\$44.40
Hourly charge of vacs being pulled (wear and tear)	\$300.00	Cost of screens	\$55.00
Hourly charge on trucks hauling mud off (wear and tear)	\$150.00		
Total cost for the day of drilling	\$1,216.21	Total cost for the day of drilling	\$546.43

TOTAL SAVINGS IN ONE DAY

TOTAL SAVINGS FOR MONTH OF EQUAL USAGE

\$669.78

\$13,395.60

Case study: Google-MasTec; Austin, TX

Case study: Google-MasTec; Austin, TX

Case study Summary

- Environmentally sensitive region
- Limited disposal sites
- Limited CDL labor force
- Additional revenue of \$10,000 per month
 - Savings of fluid and disposal
 - Increased production

THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition

