## Analyzing the Bread and Butter Benefits of Water Main Pipe Bursting

Richard (Bo) Botteicher, PE



## What is meant by the term 'bread and butter' for water main pipe bursting rehabilitation?



Utilizing Pipe Bursting
Rehabilitation and Replacement
Techniques for Potable Water
Distribution Piping Systems

#### Distribution systems with:

- Consistent, smaller pipe diameters
- Consistent materials
- Consistent layout
- Larger areas of rehabilitation typical

## Potable water distribution system specifics are a good match to pipe bursting rehabilitation and replacement methodology



- Prescriptive design practices used for original installation
- 2. Consistent depths of bury
- 3. Generally consistent materials
- 4. Consistent methods of original bedding/bury, construction
- 5. Locatable appurtenances
- Modest upsize or size-on-size requirements
- 7. Parallel separation from other utilities, conflicts limited to small number of crossing utilities

The "80%"

## Pipe bursting is a unique, low-dig solution for potable water distribution system rehabilitation and replacement

- 1. Allows existing pipes to be upsized
- 2. Utilizes the same utility and easement corridor and location
- 3. Provides a new, wholly-structural, factory produced pipe product

 A competent low-dig technology to reduce widespread surface and customer/constituent disturbance





## Challenges for 'bread and butter' pipe bursting rehabilitation of potable water distribution systems

- 1. Maintaining service for customers
- Mechanical reinstatement of service connections
- 3. Required surface (street) restoration





#### Aging water infrastructure is the common challenge





- Pipe that may be nearing the end of its useful life.
- Pipe that is undersized due to additional required capacity or deterioration.
  - Increasing break rates
  - Water quality concerns
  - Tubercles
  - Fire flow concerns

#### Pipe Bursting Basics for Water Main Rehabilitation

- The actual pipe bursting process is similar regardless of end use application.
- However, potable water applications require:
  - Pressurized service
  - Potable disinfection
- Static pipe bursting systems are advantageous due to the common materials used for water piping and water piping repairs.



#### Temporary Water or Pre-chlorinated Pipe Bursting?





#### Temporary Water system

- Requires installation of temporary piping
- Disinfection and testing
- Swap-over of service
- Disassembly after work complete
- Standard pipeline commissioning for rehabilitated section

#### Pre-chlorination

- Requires disinfection of pipe PRIOR to installation
- Care with installation and reconnection
- Can limit the time out of service
- Eliminates the need for temporary water
- Decision is based on comfort of utility in risk associated with no backup should service be delayed in the case of pre-chlorinated pipe bursting

#### Efficiency for 'bread and butter' water pipe bursting





- Bread and Butter water pipe bursting gets a significant efficiency boost through the potential repetitive nature of the work.
- Efficiency in the program then drives time and cost savings:
  - Planning
  - Repetitive Labor
  - Minimizing the system 'unknowns'
- These efforts can reduce time and labor, but cost will still be primarily driven by the cost benefits of the method:
  - Surface restoration
  - Excavation materials costs

#### The importance of planning for bread and butter construction

- Plan out larger blocks of work to be completed at the same time
  - Work should be grouped geospatially as much as possible
  - Pipe size and type organized together
  - Work grouped this way lends itself to easy 'sorting'
- Efficiency is maximized by setting similar bursts, close together, in succession
  - Tasks remain similar
  - Equipment
  - Materials
  - Standardization on new system components







#### Grouping geographic areas of work together



- Areas of need are by geographic location
- Similar installation time frame
- Similar materials and methods of original construction
- Similar needs for rehabilitation

#### Planning can also increase Labor Efficiency

- Example of a 'Rolling Block' type of labor breakdown.
- A singular crew keeps preparation, temp water, pipe fusing, installation and clean-up moving over a couple blocks at a time.
- Efficiency is attained by keeping labor busy over several functions of the process depending on the actual location of the burst.

| Day |           | Block # 1 Block # 2                            |                                                | Block # 3                                      |  |
|-----|-----------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--|
| No. | Day       | Activity Activity                              |                                                | Activity                                       |  |
| 1   | Wednesday | Fuse Pipe - 1                                  |                                                |                                                |  |
| 2   | Thursday  | Temporary Water<br>System Installed            |                                                |                                                |  |
| 3   | Friday    | Fuse Pipe - 2                                  |                                                |                                                |  |
| 4   | Monday    | Prepare Existing Water Main                    |                                                |                                                |  |
| 5   | Tuesday   | Prepare for Pipe<br>Bursting Activity          |                                                |                                                |  |
| 6   | Wednesday | Pipe Burst Activity                            | Fuse Pipe - 1                                  |                                                |  |
| 7   | Thursday  | Pipe Burst Activity                            | Temporary Water<br>System Installed            |                                                |  |
| 8   | Friday    | Commission and<br>Testing of new<br>water main | Fuse Pipe - 2                                  |                                                |  |
| 9   | Monday    |                                                | Prepare Existing Water Main                    |                                                |  |
| 10  | Tuesday   |                                                | Prepare for Pipe Bursting Activity             |                                                |  |
| 11  | Wednesday |                                                | Pipe Burst Activity                            | Fuse Pipe - 1                                  |  |
| 12  | Thursday  |                                                | Pipe Burst Activity                            | Temporary Water System Installed               |  |
| 13  | Friday    |                                                | Commission and<br>Testing of new water<br>main | Fuse Pipe - 2                                  |  |
| 14  | Monday    |                                                |                                                | Prepare Existing Water Main                    |  |
| 15  | Tuesday   |                                                |                                                | Prepare for Pipe Bursting Activity             |  |
| 16  | Wednesday |                                                |                                                | Pipe Burst Activity                            |  |
| 17  | Thursday  |                                                |                                                | Pipe Burst Activity                            |  |
| 18  | Friday    |                                                |                                                | Commission and<br>Testing of new<br>water main |  |

#### Minimizing Bread and Butter Pipe Bursting Unknowns



- Do your homework during planning stages
  - Repair records
  - Critical crossing (encasements)
  - Sanitary sewer laterals
  - Valves and appurtenances
- Understand the 'unknowns' early –
  plan for them don't allow them to
  ruin efficiency
  - Tooling sized for repair clamps
  - Tooling ready for other pipe materials (from repair)
  - Protocol for dealing with lateral line breaks or issues

### Critical parameters for Bread and Butter Water pipe bursting success





- The following items are imperative for project and program success:
  - Focusing on efficiency of installations
  - Waterline testing requirements
  - Pavement rehabilitation requirements
  - Community support
  - Political support
- Beware the institutional traps of alternate methods!
  - Lack of commitment
  - No 'champion' in the utility
  - 'Silver Bullet' trap
  - Contractor vs. utility economics

| Utility                            | City of Billings, MT                                                                                                 | Consolidated Mutual<br>Water (Lakewood, CO)                                                                 | Cheyenne Board of<br>Public Utilities, WY       | Lee's Summit, MO                                            | Greensboro, NC                                  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| Туре                               | Public                                                                                                               | Private                                                                                                     | Public                                          | Public                                                      | Public                                          |
| Annual Burst Lengths (LF)          |                                                                                                                      |                                                                                                             |                                                 |                                                             |                                                 |
| 2008                               | 520                                                                                                                  | -                                                                                                           |                                                 | =                                                           | -                                               |
| 2009                               | 1,210                                                                                                                | -                                                                                                           | <b>2</b> 0                                      | 12,700                                                      | 2,720                                           |
| 2010                               | 5,185                                                                                                                | 23,000                                                                                                      | -                                               | -                                                           | 6,720                                           |
| 2011                               | 4,000                                                                                                                | 31,000                                                                                                      | 2,070                                           | ÷                                                           | 6,280                                           |
| 2012                               | 3,300                                                                                                                | 43,000                                                                                                      | 4,700                                           | 14,000                                                      | 8,400                                           |
| 2013                               | 2,000                                                                                                                | 30,640                                                                                                      | 4,650                                           | 11,000                                                      | 4,950                                           |
| 2014 est                           | 2.000                                                                                                                | 40.000                                                                                                      | 9.570                                           | 5.400                                                       | 8.950                                           |
| TOTAL Lineal Feet                  | 18,215                                                                                                               | 167,640                                                                                                     | 20,990                                          | 43,100                                                      | 38,080                                          |
| Existing Pipe                      | 4-8" CI                                                                                                              | 4-8" CI                                                                                                     | 4-8" CI                                         | 4-8" CI/DI                                                  | 2-8" CI                                         |
| Replacement Pipe                   | 8" and 12" DR14<br>FPVC®                                                                                             | 4", 6" (mostly) & 8" DR18<br>FPVC®                                                                          | Mostly 8" DR14<br>FPVC®, some 12"<br>DR14 FPVC® | 6" & 8" DR18 FPVC®                                          | Mostly 6" and 8"<br>DR18FPVC®                   |
| Design Engineer                    | City Engineer                                                                                                        | CMW                                                                                                         | Cheyenne BOPU                                   | City of Lee's Summit                                        | Greensboro Water                                |
| Bid Type                           | Internal                                                                                                             | Internal                                                                                                    | Typical                                         | Typical                                                     | Annual Contract                                 |
| Installing Contractor              | City Crews                                                                                                           | CMW                                                                                                         | Aztec Construction                              | Wiedenmann &<br>Godfrey,<br>Lamke Trenching &<br>Excavating | KRG Utility                                     |
| Fusion Contractor                  | City Crews                                                                                                           | CMW                                                                                                         | UGSI and Aztec                                  | CES Industrial Piping<br>Supply                             | KRG Utility                                     |
| Pipeburst Equipment                | Hammerhead                                                                                                           | TT Technologies                                                                                             | TT Technologies                                 | TT Technologies                                             | TT Technologies                                 |
| 3 <sup>rd</sup> Party Publications | Municipal Water &<br>Sewer, March 2014<br>Municipal Sewer &<br>Water, Nov 2010<br>No Dig Conference,<br>Chicago 2010 | AWWA Opflow, Sept<br>2012<br>Trenchless Technology<br>Project of the Year, Oct<br>2013<br>No Dig Conference | No Dig Conference,<br>Sacramento 2013           | ASCE Pipelines, Ft.<br>Worth 2013                           | NCAWWA,<br>ASCE Pipelines,<br>No Dig Conference |
| Documented Savings                 | ~\$200/ft for open-cut to<br>~\$100/ft                                                                               | ~\$100/ft for open-cut to<br>~\$50/ft                                                                       | ~20% savings                                    | ~23%                                                        | N/A <sub>15</sub>                               |

#### Conclusions

#### **Cost Reduction or Savings**

- Make your own estimates of cost and efficiency based on YOUR situation
- Will depend on paving and excavation requirements
- Do not trade your economics for those of a contractor or supplier!

#### Efficiency – doing more with less

- Allow the greatest efficiency for bread and butter pipe bursting by packaging it together correctly
- Repetitive labor and installation scenarios will save time and money

#### **Customer relations**

- Pipe bursting has value beyond the dollar to those customers that use the system
- Providing a valuable product at a reasonable price is something to brag about!

#### **Question and Answer**



# Analyzing the Bread and Butter Benefits of Water Main Pipe Bursting

Richard (Bo) Botteicher, PE

Underground Solutions, Inc.

bbotteicher@ugsi.us

(303) 521-2618