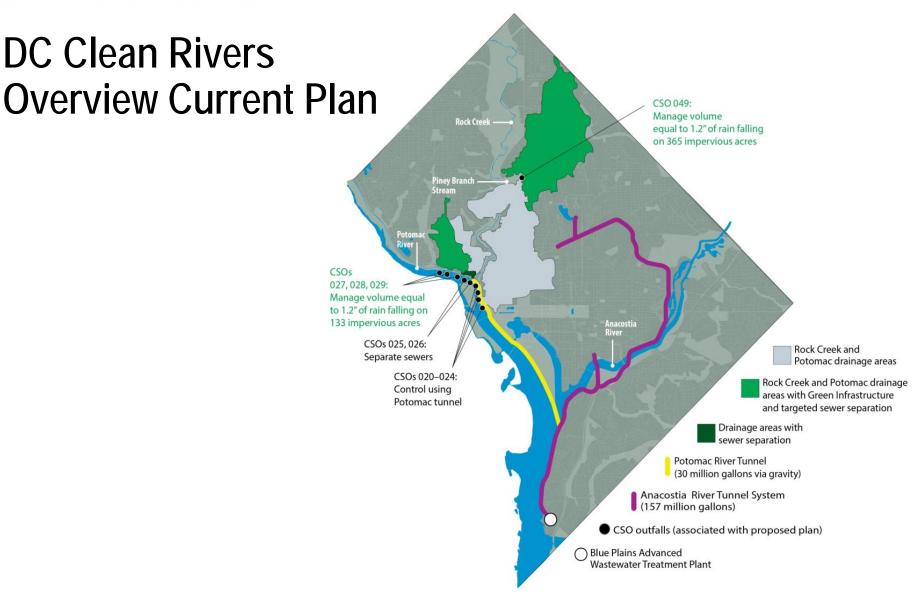

Risk Management on Infrastructure Tunnel Projects

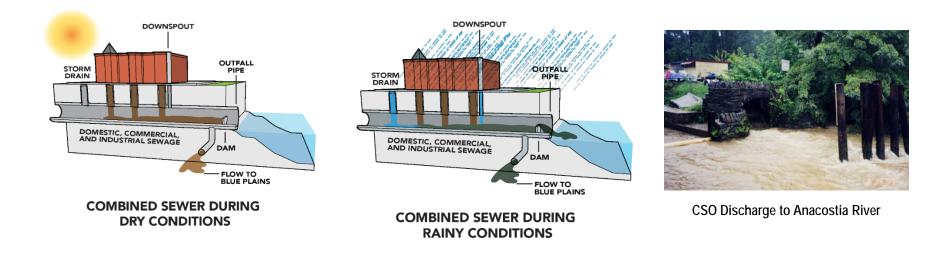
Matt Koziol, PE

Learning Objectives

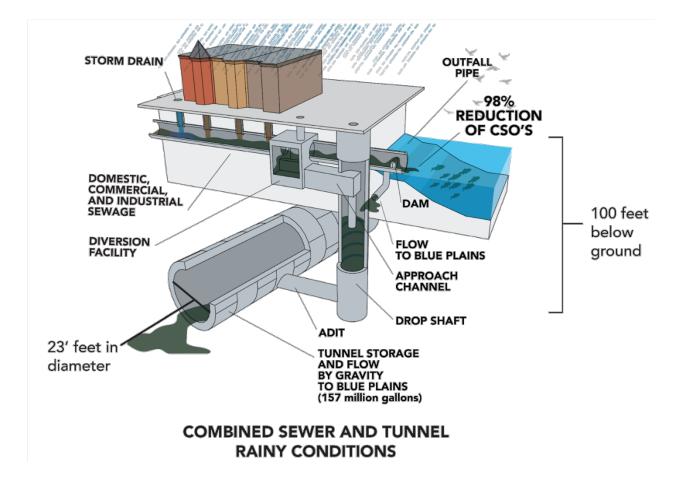
- 1. An appreciation for the size and complexity of the **DC Clean Rivers Project**
- 2. A cursory understanding of **risk** management theory and processes
- **3. Results** of the Risk Management process for DCCRP

DC Clean Rivers Project (DCCRP)


In 2005, DC Water entered into a consent decree with the **Department of Justice**, the **EPA**, and the **District of Columbia** and embarked on what is currently a 25-year (2005-2030), \$2.77 billion program christened the **DC Clean Rivers Project** to reduce CSOs into the Anacostia River, the Potomac River, and Rock Creek by 96% during an average year.



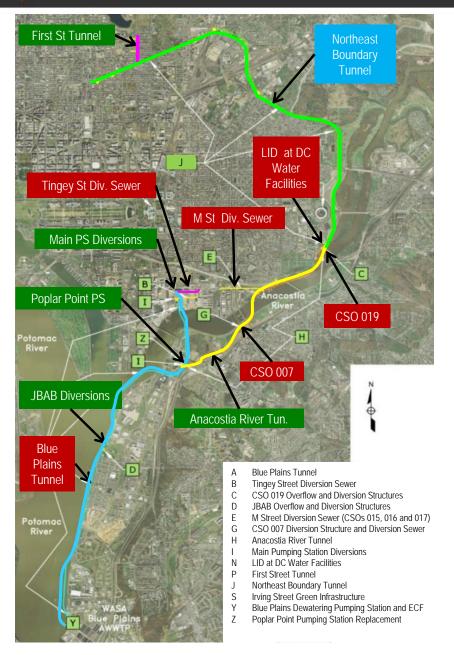
What is a CSO?



On average, 2.1 billion gallons of untreated sewage and stormwater runoff (combined sewage) are discharged to the Anacostia River per year

DCCRP Project Solution for the Anacostia River

6


THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition

Anacostia River Tunnel System Snapshot

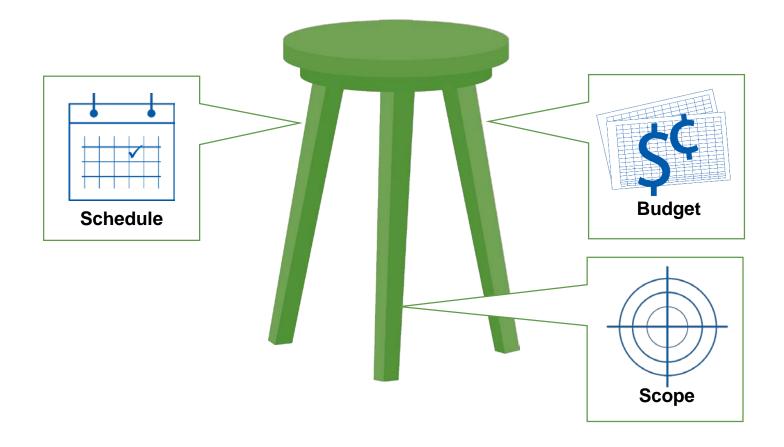
ProcurementConstructionCompleted

More than \$1.3 B in Contracts have been let for the Anacostia River Projects

Anacostia River Tunnel System Snapshot

8

Project	Diameter	Length	Start	Finish
Blue Plains Tunnel	23	24,207	5/2011	12/2015
Anacostia River Tunnel	23	12,484	6/2013	12/2017
Northeast Boundary Tunnel	23	27,000	9/2017	5/2023
First Street Tunnel	20	2,700	10/2013	10/2016


Combined total length of 12.6 miles

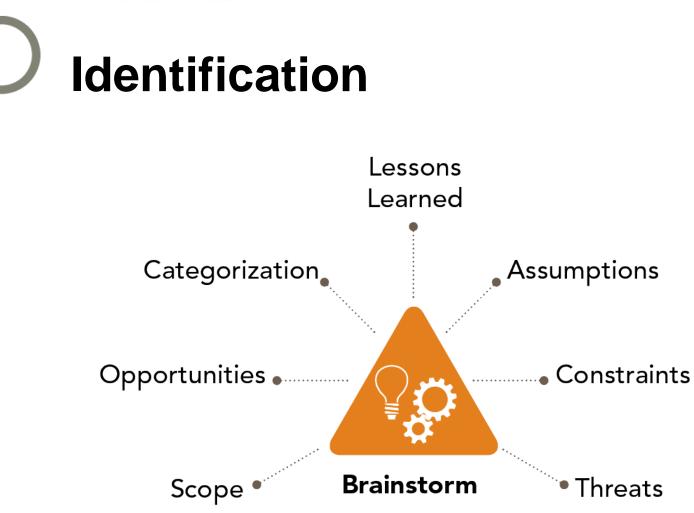
Introduction to Risk Management

THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition

Our Risk Management Approach

Risk Management = Identification + Evaluation + Mitigation


Identification

A risk is an uncertain event or condition that, if it occurs, has a positive or negative effect on one or more project objectives¹.

Scope Schedule Perception Budget Safety Project **Objectives**

¹ Project Management Institute (PMI) - A Guide to the Project Management Body of Knowledge (PMBOK Guide)

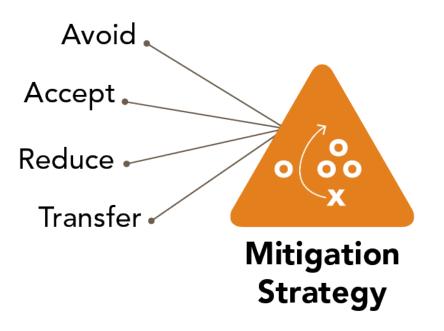
Identification Risk Breakdown Structure

	Planning	100 200 300 400 500	ROW & Easements Permits
	Design	600	Engineering
55	Procurement	700	Contracting Issues
	Construction	1100 1200	Material, Equipment & Labor Supply Environment/Public Impacts General Site Conditions Construction Material Installation Safety & Security
	Operations	1400	System Operations

Evaluation

In a collaborative workshop the risks are qualitatively rated by evaluating or assessing and combining each risk's relative likelihood of occurrence and severity of consequence on a scale of 1-5 to determine a risk rating for each risk.

Risk Rating = L x S


THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition

Mitigation

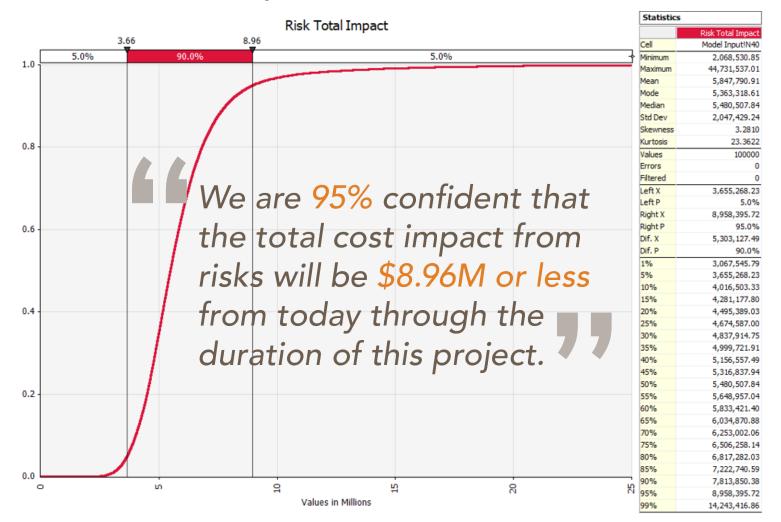
Utilizing the risk ratings as a prioritization tool, mitigation actions are developed and assigned to a responsible party or person.

Mitigation: Risk Register

Risk ID	Rist	8	1 2 3		10T plans	to DOT e	arly.	1. Designer 2. 3.	5	
100	PROJECT PLAI Failure to adequ sufficient size sta	12		. Research . Determin			s. n-down levels.	 Designer Designer 		
	construction. PROJECT PLAI Unable to obtair			 Research power needs and availability. 				3. 1. Owner/Designer		
201 300		8		 Develop list of permits. Conduct a permit preapplication meeting. 				2. Designer 3. Designer		
301		ning or maintaining ring.	S - Schedule	4	3	12	 Research State requirements. Determine theoretical drawn-down levels. 3. 	1. Designer 2. Designer 3.	1. Ongoing 2. Ongoing 3.	
302	An unknown pern quality).	nit is required (e.g. air	S - Schedule	4	2	8	 Research power needs and availability. Develop list of permits. Conduct a permit preapplication meeting. 	 Owner/Designer Designer Designer 	 1. Ongoing 2. Ongoing 3. Complete 	
400	400 PROJECT PLANNING & DEVELOPMENT - Public Relations/Acceptance									
401	Local public oppo closures/traffic iss construction.	sition to road ues associated with	C - Cost O - Other	5	3	15	 Educate community about project. Identify construction haul and access routes. Identify alternate routes and detours. 	1. Owner 2. Owner/Designer 3. Designer	 Ongoing Ongoing Future 	

Quantitative Cost Analysis

In a collaborative workshop we quantify each cost impact risk by assigning a probability of occurrence and a range of cost consequences in dollars.


Risk ID	Risk Description	Probability of Occurrence %	Owners Share of Risk %	Multiple Occurrence Possible?	Consequence in \$				
		Р	\bigcirc	Y/N	Min	10%	50%	90%	Max
900	900 CONSTRUCTION - Environmental/Public Impacts (permit non-compliance)								
903	Contaminated groundwater drawn into excavations resulting in extra cost, time and 3rd party claims	5%	100%	Y	\$250k	\$300k	\$500k	\$700k	\$750k
904	Contractor encounters cultural or archaeological resources (or potentially cultural or archaeological resources) during construction	90 %	100%	Y	\$25K	\$100K	\$250K	\$300K	\$750K
908	Contractor unable to cut off water from excavations due to multiple SOE systems is used	50%	100%	Y	\$0k	\$50k	\$500k	\$700k	\$2500k
1000	1000 CONSTRUCTION - General Site Conditions								
1001b	Construction fails to complete TBM removal in their 90-day window	50%	100%	N	\$100k	\$200k	\$400k	\$750k	\$1000k

Cost Impacts = P x C x O

THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition

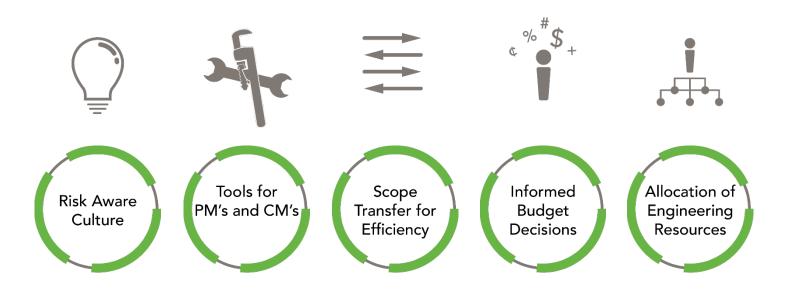
Quantitative Cost Analysis

Quantitative Schedule Analysis

	Risk Description	Schedule Activity	Probability of Occurrence	Consequence in Days			
Risk			%	Minimum	Most Likely	Maximum	
1100							
1103	Tunneling induced settlement of CSX railroad, exceeds allowable limits	TBM-CON-1120	2%	5	10	20	
1107	Existing sewers or utilities are damaged due to age or condition	CON-VS-1570 CON-VS-1240	20%	3	5	10	

The variability of schedule activities are also assigned -

Activity ID	tivity ID Activity	Activity Duration				
		Minimum	Most Likely	Maximum		
TBM-CON-1120	TBM mine from Station 0+00 to 12+43	20	25	35		
CON-VS-1570	Tie-in to existing 36" RCCP water main	3	5	10		



Quantitative Schedule Analysis

Results of Risk Management Process for DCCRP

Thank You

Matt Koziol, PE Project Engineer

T/ 972-250-3322 **C/** 425-652-9184 mkoziol@schnabel-eng.com