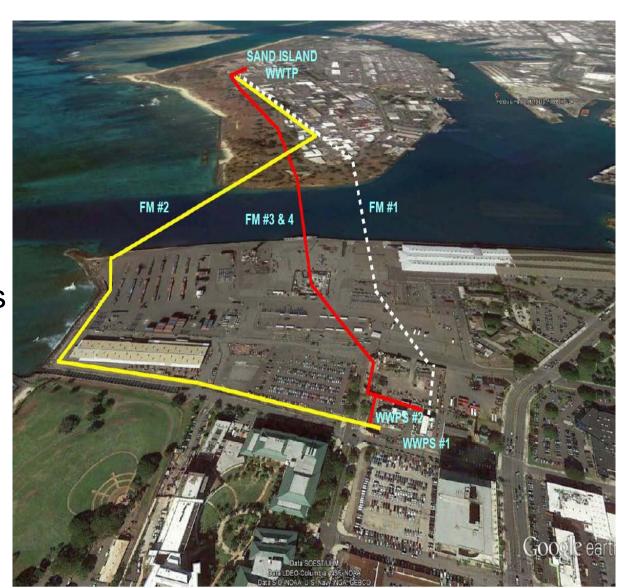
Honolulu's Largest Wastewater Force Main System

Jon Nishimura, P.E. ¹, James Kwong, Ph.D., P.E. ², Denise Wong, P.E.³ and
Bijan Khamanian⁴


¹Principal, Fukunaga & Associates, Inc., Honolulu, Hawaii ²Principal, Yogi Kwong Engineers, LLC, Honolulu, Hawaii ³Project Manager, Dept. of Design & Construction - Wastewater Division, City & County of Honolulu

⁴Division Manager - West, Hobas Pipe USA

Underground Construction Technology International Conference & Exhibition

Outline

- Overview
- DesignConsiderations
- Design Challenges
- Bid Requirements
- Construction

PROJECT TEAM

CITY & COUNTY OF HONOLULU, DEPARTMENTS OF ENVIRONMENTAL SERVICES (ENV) & DESIGN & CONSTRUCTION (DDC)

DESIGN CONSULTANTS

CIVIL/PRIME: Fukunaga & Associates, Inc. GEOTECHNICAL: Yogi Kwong Engineers, LLC

STRUCTURAL: Shigemura, Lau, Sakanashi, Higuchi & Associates, Inc.

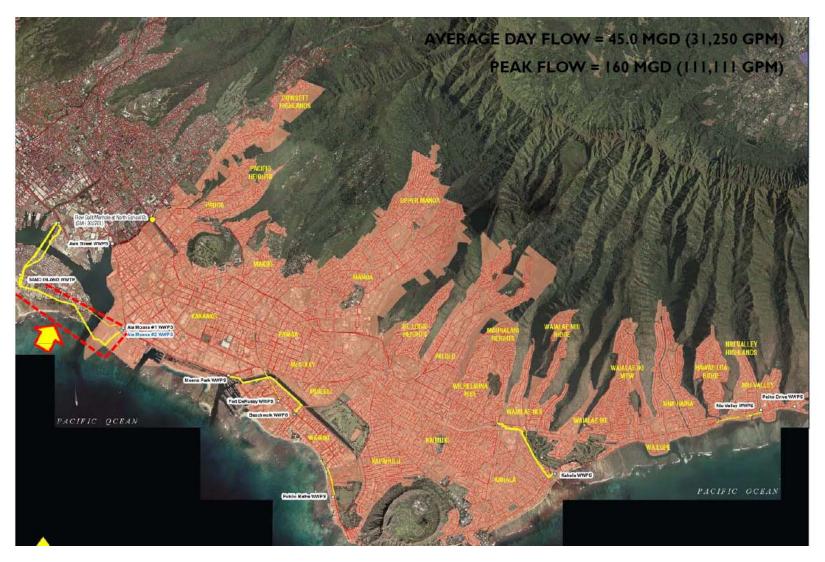
ELECTRICAL: MK Engineers, Ltd.

ENVIRONMENTAL: Element Environmental, LLC

CORROSION PROTECTION: V&A Consulting Engineers, Inc.

SURGE ANALYSIS / CONTROLS: Flow Science, Inc.

LANDSCAPE: Walters, Kimura, Motoda, Inc. ARBORIST: Steve Nimz and Associates, Inc.


GENERAL CONTRACTOR

FRANK COLUCCIO CONSTRUCTION COMPANY

CONSTRUCTION MANAGER

YOGI KWONG ENGINEERS, LLC

Ala Moana WWPS & Force Main Service Area

Global Consent Decree Project US EPA/DOJ & State DOH

- Execute Construction Contract by July 31, 2012
- Complete Construction of New Force Main by December 31, 2014

Project Objectives

 GCD – Design and Complete Construction of Force Mains #3 and #4 with Force Main #2 as backup

 Provide a WWPS/Force Main System with sufficient capacity and operational flexibility to handle current and future design conditions

Existing Systems

Force Main #1

- 60" diameter reinforced concrete pipe
- Built in 1952 (channel crossing in 1958) ~ 60 years old
- 66 mgd capacity
- Pressure rating: 58 feet

Force Main #2

- 66"-78" diameter reinforced concrete pipe / concrete cylinder pipe
- Built in 1983 ~ 30 years old
- 157± mgd capacity
- Pressure rating: 80 feet
- Break occurred on Sand Island side of channel crossing in 2004

Ala Moana WWPS Force Main System

Design Parameters				
Design Life	50-year			
Design Year	2065			
FM System Design Peak Flow	225 mgd			
FM System Capacity	New FM System sized to convey the Design Peak Flow assuming the largest FM (FM #2) out of service.			

Ala Moana WWPS Force Mains							
	Diameter	Working Pressure	Capacity	Year Built	Average and Peak Dry Weather Flow Velocity		
AMFM #2	66" – 78" RCP	75 feet	157 <u>+</u> mgd	1983 (~30 years old)			
AMFM #3	63" CCGFRP	115 feet	170 <u>+</u> mgd 123 mgd (9 fps)	2015	3.28 fps, 3.93 fps		
AMFM #4	63" CCGFRP	115 feet	170 <u>+</u> mgd 123 mgd (9 fps)	2015	3.28 fps, 3.93 fps		

Ala Moana Force Mains #3 & #4 Overall Alignment

Operations

Normal Operations

- WWPS #1 discharging through FM #3
- WWPS #2 discharging through FM #4

Alternative Operations

Both WWPS discharging through 1 FM to flush that FM

Emergency Operations

With any force main segment or valve out of service, at least 1 WWPS and 1
 FM path can remain available for service

Affected Landowners Approvals/Easements

- Hawaii Community Development Authority (HCDA)
 - Right of Entry / Construction Staging / Easement
- Office of Hawaiian Affairs (OHA)
 - Easement
- State of Hawaii DLNR State Parks
 - Right of Entry / Construction / Easement
 - Land & Water Conservation Program Fund (2-yr Construction Period)
- State of Hawaii DOT Harbors
 - Right of Entry / Construction / Easement
- State of Hawaii DOT
 - Construction Staging Area Sand Island

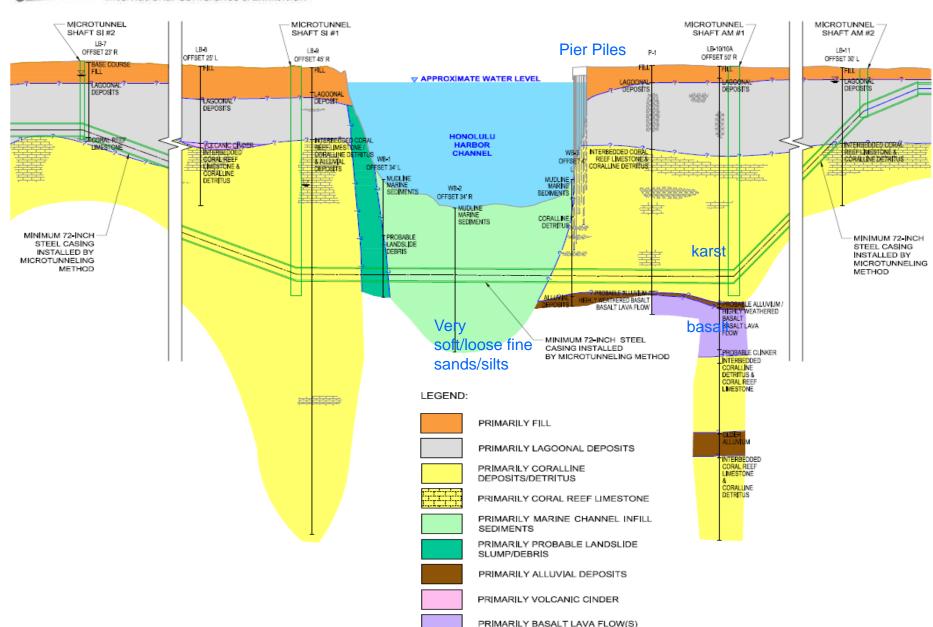
Permits/Approvals Required

- Coastal Zone Management Program (CZM)
- Conservation District Use Application (DLNR)
- Department of the Army Permit (COE)
- Environmental Assessment/FONSI (OEQC)
- Hawaii Community Development Authority (HCDA)
- Industrial Wastewater Discharge Permit (C&C ENV)
- Land and Water Conservation Fund Program Approval (LWCF) (NPS)
- National Pollutant Discharge Elimination System (NPDES) Permit (DOH)
- Noise Variance Permit (DOH)
- Special Management Area (SMA) Use Permit (City)
- State Historic Preservation Division (DLNR)
- U.S. Coast Guard work in Harbor (Maritime Security)

Underground Construction Technology International Conference & Exhibition

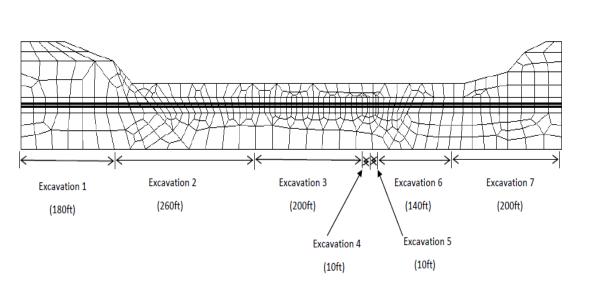
Main Technical Design Challenges

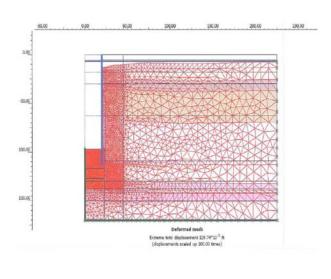
- Geotechnical Challenges
 - Most of the new FM is below sea level -20 to -80 ft MSL
 - Need to avoid existing pier piles
 - I,588 If force main harbor crossing is at elevation (-) 80 ft MSL include crossing of buried canyon filled with very soft & loose fine sands/silt fine sands (N=0)
 - Variable coralline detritus & limestone with cavities, very hard basalt lavas
 - Potential unsteerable conditions for microtunneling, steep incline drives (10%)
 - Deep shafts 20 to 100 feet deep, hydrostatic pressure, excavation stability
 - Large piping/valves/vaults 54 to 81 inch piping systems, buoyancy & settlement concerns during and after installation
 - Not possible to perform emergency recover or ground improvement in harbor channel
- Maintaining wastewater flow during construction and connections
 - Ala Moana WWPS and Sand Island WWTP must remain in service throughout project
 - Provide adequate capacity during construction bypass piping plans

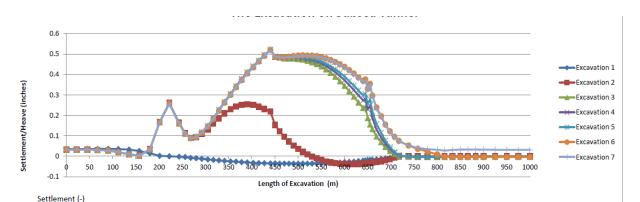


Underground Construction Technology International Conference & Exhibition

Project Site General Plan

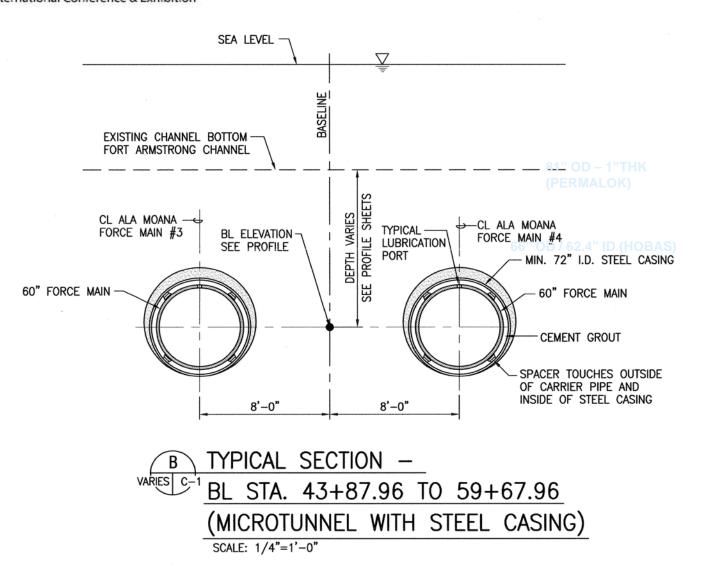





Heave(+)

THE Event For The Utility Infrastructure Industry

Underground Construction Technology International Conference & Exhibition



Examples of geotechnical analyses performed to develop bid requirements.
3-D FEM analysis of potential steel casing deflection at stages of microtunneling assisted by Tritech, Inc.

Sewer Force Main Pipe Considerations

- Design Considerations/Requirements
 - Proven installation/service track records
 - Corrosion Resistance (a must in Hawaii)
 - Low Maintenance (up to 90 feet deep, pressure application)

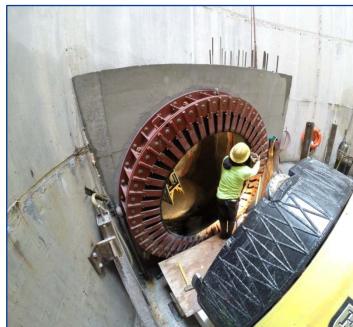
Some Bidding Requirements

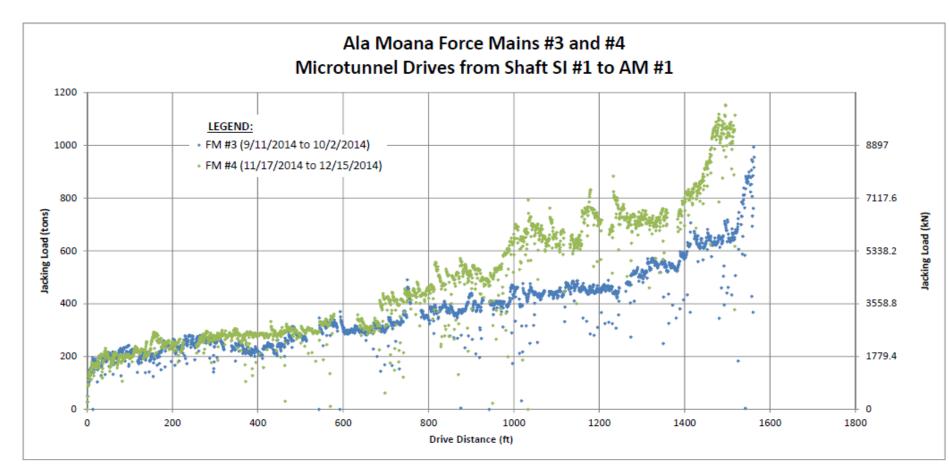
- Bidders Statement of Qualifications
 - Microtunneling
 - Shafts Design/Construction (Contractors & its retained Structural, Civil, Geotechnical)
 - Jet Grouting
 - Force Mains Connections By-Pass
- Microtunneling
 - Microtunneling Systems, work plan and sequencing to include mitigation of buoyancy uplift, potential microtunneling induced ground movements during and after installation of pipelines, jacking steel casing
 - Provisions to access tunnel heading through access door(s) in MTBM in case of unforeseen obstruction, automated guidance systems
- Shafts
 - Contractor responsible for design & selection of methods. Feasible methods
 included contiguous reinforced concrete drilled piers with ground improvement
 by jet grouting, vertical shaft sinking method, and ground water control by a
 structural concrete bottom slab

Underground Construction Technology International Conference & Exhibition

Shafts less than 50 feet deep

Jacking Casing Pipe Submittals included certification from manufacturer, for compliance with project requirements



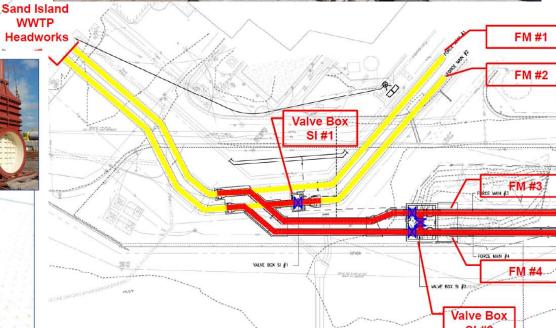


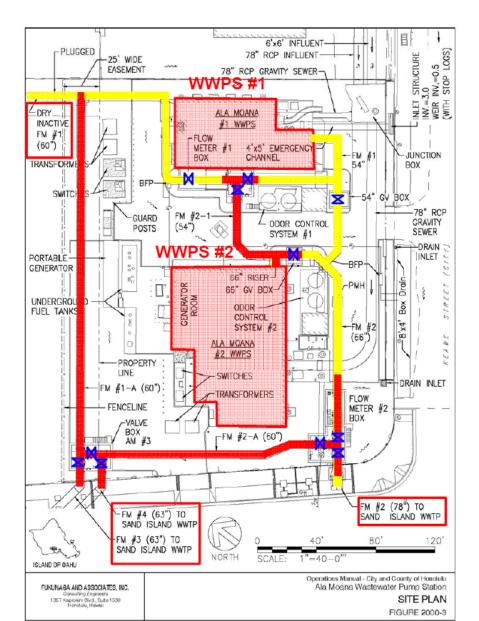
Underground Construction Technology International Conference & Exhibition

Note: Recorded grade deviations of less than +/- 2 inches over 50 to 100 feet of jacked distances

Underground Construction Technology International Conference & Exhibition

Installation of carrier sewer force main pipes





GCD Milestones

- Execute Construction Contract by July 31, 2012
 - Design Completed May 2011
 - Bids Opened September 28, 2011
 - Budget Estimate \$167 M
 - Three Bids Range \$117 M \$153 M
 - Contract Award & NTP November 28, 2011
 - Frank Coluccio Construction Company
- Completed Construction of New Force Main System by December 31, 2014

Underground Construction Technology International Conference & Exhibition

Thank you

Questions?